Answer: k= 
Explanation:
Recall that the formula for kinetic energy is given below as
k = 
where k=kinetic energy (joules), m= mass of object (kg), v= velocity of object m/s)
For cart A
= mass of cart A
= v = velocity of cart A
= kinetic energy of cart A
hence,
= 
For cart B
= mass of cart B
= 2v = velocity of cart B
= kinetic energy of cart B
hence,
=
= 2
from the question, both cart are identical which implies they have the same mass i.e
=
= m which implies that
and 
The total kinetic energy K is the sum of cart A and cart B kinetic energy


hence

Answer:
1.98 atm
Explanation:
Given that:
Temperature = 28.0 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T₁ = (28 + 273.15) K = 301.15 K
n = 1
V = 0.500 L
Using ideal gas equation as:
PV=nRT
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L atm/ K mol
Applying the equation as:
P × 0.500 L = 1 ×0.0821 L atm/ K mol × 301.15 K
⇒P (ideal) = 49.45 atm
Using Van der Waal's equation
R = 0.0821 L atm/ K mol
Where, a and b are constants.
For Ar, given that:
So, a = 1.345 atm L² / mol²
b = 0.03219 L / mol
So,


⇒P (real) = 47.47 atm
Difference in pressure = 49.45 atm - 47.47 atm = 1.98 atm
Answer:
B) form a straight line with the Moon in the middle.
Explanation:
- For the occurrence of a solar eclipse the earth and the moon and the sun must be in a straight line and moon should be in center of the earth so that it completely blocks the rays of the sun and the shadow falls on earth and the sun appears to form a ring and thus the eclipse takes place.
Answer:
The squeeze will not regain its shape
Explanation:
The squeeze bottle will not regain its shape.
This is because the atmospheric pressure compresses the squeeze bottle. Since the pressure in the squeeze bottle is now not equal to the atmospheric pressure since it has been corked tightly, its internal pressure cannot balance out the atmospheric pressure and thus cancel its effect.
So, the squeeze bottle does not regain its shape due to this imbalance of pressure.
The value of the swimmer's power output is calculated by dividing the work done by the time it took for the work to be completed. From the given in this item,
P = 3560 J/ 55 s = 64.73 W
Rounding off to two significant figures will give us 65 W.