answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kruka [31]
1 year ago
5

Two leopards are fighting over a piece of meat they caught while hunting. The leopards pull on the meat muscle with a force of 1

00. N, stretching the 0.10-m-long tendon by 0.0080 m. If the cross-sectional area of the tendon is 1.0 105 m2, what is its stretch modulus?
Physics
1 answer:
kirza4 [7]1 year ago
3 0

Answer:

Stretch Modulus of the given is

Modulus = 1.25 \times 10^8 N/m^2

Explanation:

By the law of elasticity we know that the ratio of stress and strain is known as modulus of elasticity

So here we have

Modulus = \frac{stress}{strain}

here we have

stress = \frac{Force}{Area}

stress = \frac{100}{1.0 \times 10^{-5}}

stress = 10^7 m^2

now similarly we have

strain = \frac{\Delta L}{L}

strain = \frac{0.0080}{0.10}

strain = 0.08

Now we have

Modulus = \frac{10^7}{0.08}

Modulus = 1.25 \times 10^8 N/m^2

You might be interested in
A student measures the pH of a solution to be 6.8. Which should the student add if she wants to decrease the pH of the solution?
zloy xaker [14]
The neutral pH is 7. Less than 7 indicates an acid and more than 7 indicates a base (up to 14).
<span> NaCl - it's a salt (we can't measure the pH)
H2O - it can be an acid but also a base  (the pH it is almost neutral,meaning close to 7 )
HF - it is a strong acid
</span><span> KOH  - it is a strong base (pH=14)
</span>
                        ↓

He needs to use HF (Hydrogen fluoride) to decrease the pH.


7 0
1 year ago
Read 2 more answers
An ideal gas is contained in a vessel at 300 K. The temperature of the gas is then increased to 900 K. (i) By what factor does t
Dahasolnce [82]

The question is missing some parts. Here is the complete question.

An ideal gas is contained in a vessel at 300K. The temperature of the gas is then increased to 900K.

(i) By what factor does the average kinetic energy of the molecules change, (a) a factor of 9, (b) a factor of 3, (c) a factor of \sqrt{3}, (d) a factor of 1, or (e) a factor of \frac{1}{3}?

Using the same choices in part (i), by what factor does each of the following change: (ii) the rms molecular speed of the molecules, (iii) the average momentum change that one molecule undergoes in a colision with one particular wall, (iv) the rate of collisions of molecules with walls, and (v) the pressure of the gas.

Answer: (i) (b) a factor of 3;

              (ii) (c) a factor of \sqrt{3};

              (iii) (c) a factor of \sqrt{3};

             (iv) (c) a factor of \sqrt{3};

              (v) (e) a factor of 3;

Explanation: (i) Kinetic energy for ideal gas is calculated as:

KE=\frac{3}{2}nRT

where

n is mols

R is constant of gas

T is temperature in Kelvin

As you can see, kinetic energy and temperature are directly proportional: when tem perature increases, so does energy.

So, as temperature of an ideal gas increased 3 times, kinetic energy will increase 3 times.

For temperature and energy, the factor of change is 3.

(ii) Rms is root mean square velocity and is defined as

V_{rms}=\sqrt{\frac{3k_{B}T}{m} }

Calculating velocity for each temperature:

For 300K:

V_{rms1}=\sqrt{\frac{3k_{B}300}{m} }

V_{rms1}=30\sqrt{\frac{k_{B}}{m} }

For 900K:

V_{rms2}=\sqrt{\frac{3k_{B}900}{m} }

V_{rms2}=30\sqrt{3}\sqrt{\frac{k_{B}}{m} }

Comparing both veolcities:

\frac{V_{rms2}}{V_{rms1}}= (30\sqrt{3}\sqrt{\frac{k_{B}}{m} }) .\frac{1}{30} \sqrt{\frac{m}{k_{B}} }

\frac{V_{rms2}}{V_{rms1}}=\sqrt{3}

For rms, factor of change is \sqrt{3}

(iii) Average momentum change of molecule depends upon velocity:

q = m.v

Since velocity has a factor of \sqrt{3} and velocity and momentum are proportional, average momentum change increase by a factor of

(iv) Collisions increase with increase in velocity, which increases with increase of temperature. So, rate of collisions also increase by a factor of \sqrt{3}.

(v) According to the Pressure-Temperature Law, also known as Gay-Lussac's Law, when the volume of an ideal gas is kept constant, pressure and temperature are directly proportional. So, when temperature increases by a factor of 3, Pressure also increases by a factor of 3.

4 0
1 year ago
(a) when rebuilding her car's engine, a physics major must exert 300 n of force to insert a dry steel piston into a steel cylind
Vilka [71]
There are some missing data in the text of the problem. I've found them online:
a) coefficient of friction dry steel piston - steel cilinder: 0.3
b) coefficient of friction with oil in between the surfaces: 0.03

Solution:
a) The force F applied by the person (300 N) must be at least equal to the frictional force, given by:
F_f = \mu N
where \mu is the coefficient of friction, while N is the normal force. So we have:
F=\mu N
since we know that F=300 N and \mu=0.3, we can find N, the magnitude of the normal force:
N= \frac{F}{\mu}= \frac{300 N}{0.3}=1000 N

b) The problem is identical to that of the first part; however, this time the coefficienct of friction is \mu=0.03 due to the presence of the oil. Therefore, we have:
N= \frac{F}{\mu}= \frac{300 N}{0.03}=10000 N
8 0
1 year ago
How many significant figures do each of the following numbers have: (a) 214, (b) 81.60, (c) 7.03, (d) 0.03, (e) 0.0086, (f) 3236
Korolek [52]

In determining the number of significant figures in a given number, there are three rules to always remember / follow:

First: All integers except zero are always significant.

<span>Second: Any zeros located between  non zeroes are always significant.</span>

Third: A zero located after a non zero in a decimal is always significant whether it is before or after the decimal

 

Therefore using this rule, the number of significant digits in the given numbers are:

(a) 214 = 3

(b) 81.60 = 4

(c) 7.03 = 3

(d) 0.03 = 1

(e) 0.0086 = 2

(f) 3236 = 4

(g) 8700 = 2

4 0
2 years ago
Passengers on a carnival ride move at constant speed in a horizontal circle of radius 5.0 m, making a complete circle in 4.0 s.
Nataliya [291]

Answer:

bonita sisisisiisisisisiisissiissiisiiss

7 0
1 year ago
Other questions:
  • Noah drops a rock with a density of 1.73 g/cm3 into a pond. Will the rock float or sink?
    9·2 answers
  • This outlaw is executed by hanging "in the spring of '25" by
    10·1 answer
  • A 0.12 kg bird is flying at a constant speed of 7.8 m/s. what is the birds conetic energy?
    13·2 answers
  • a box weighing 155 N is pushed horizontally down the hall at constant velocity. the applied force is 83 n what is the coefficien
    8·1 answer
  • Of the three primary forms of subaerial volcanoes, ________ are large cone-shaped mountains that consist of alternating layers o
    5·1 answer
  • You throw a baseball at an angle of 30.0∘∘ above the horizontal. It reaches the highest point of its trajectory 1.05 ss later. A
    13·1 answer
  • The platform is rotating about the vertical axis such that at any instant its angular position is u = (4t3/2) rad, where t is in
    8·1 answer
  • Which formula is used to find fluctuation of the shape of body
    11·1 answer
  • Gretchen runs the first 4.0 km of a race at 5.0 m/s. Then a stiff wind comes up, so she runs the last 1.0 km at only 4.0 m/s.
    9·1 answer
  • a block weighing (Fg) 50 N is resting on a steel table (us = 0.74). The minimum force to start this block moving is what N
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!