answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
coldgirl [10]
2 years ago
11

A baggage handler at an airport applies a constant horizontal force with magnitude F1 to push a box, of mass m, across a rough h

orizontal surface with a very small constant acceleration a.
The baggage handler now pushes a second box, identical to the first, so that it accelerates at a rate of 2a.
How does the magnitude of the force F2 that the handler applies to this box compare to the magnitude of the force F1 applied to the first box?
Physics
1 answer:
Vikentia [17]2 years ago
6 0

Answer:

F_2 = 2F_1 - F where F is the friction force that is the same for both boxes

Explanation:

So the same boxes at the same mass m would create a same friction force, let this force be F. The net force in the first and 2nd cases would be

- 1st case: F1 - F

- 2nd case F2 - F

According to Newton 2nd law, this net would make acceleration

- 1st case a_1 = (F_1 - F)/m

- 2nd casea_2 = (F_2 - F)/m

Since a_2 = 2a_1

(F_2 - F)/m = 2(F_1 - F)/m

F_2 - F = 2F_1 - 2F

F_2 = 2F_1 - F

You might be interested in
A 0.110 kg cube of ice (frozen water) is floating in glycerine. The glycerine is in a tall cylinder that has inside radius 3.70
Sonbull [250]

Answer:

the distance by which the height of the  liquid in the cylinder change after the ice gets melted = 0.528 cm

Explanation:

The change in volume of glycerin when the ice cube is placed on the surface of the glycerin can be represented as:

V = \frac{m}{ \rho}

Given that ;

the mass of the ice cube (m) = 0.11 kg = 0.110 × 10³ g

density of the glycerine (\rho) = 1.260 kg/L = 1.260 g/cm³

Then:

V = \frac{0.110*10^3 \ g}{1.260 \ g/cm^3}

V = 0.0873*10^3 \ cm^3 (\frac{1L}{10^3 cm^3})

V = 0.0873 L

Now;Initially the volume of the glycerin before the ice cube starts to melt is:

V_1 = V_i + V\\\\V_1 = V_i+ 0.0873 \ L

However; the volume of the water produced by the 0.11 kg ice cube = 0.11*10^3 \ cm^3

The expression for change in the volume of glycerin after the ice cube starts to melt is as follows:

V_2 = V_i + V"

replacing V" with 0.11*10^3 \ cm^3 ; we have:

V_2 = V_i (0.11*10^3 \ cm^3 )(\frac{1 \ L }{10^3 \ cm^3})

V_2 = V_i + 0.11 \ L

The overall total change in the volume of the glycerin is illustrated as:

V_f = V_2 - V_1

Now; from the foregoing ; lets replace the respective value of V_2 and V_1 in the above equation ; we have;

V_f = (V_i + 0.11 \ L) - (V_i + \ 00873 \ L)\\ \\V_f = 0.11 L - 0.0873 \ L\\\\V_f = 0.0227 \ L

The formula usually known to be the volume of a cylinder is :

V = \pi r ^2 h

For the question ; we will have:

V_f = \pi r ^2 h

making h the subject of the  formula ; we have:

h = \frac{V_f}{\pi r^2}

replacing 0.0227 L for V_fand the given value of radius which is = 3.70 cm; we have:

h = \frac{0.0227 \ L ( \frac{10^3 \ cm^3}{1\ L})}{\pi * (3.70 cm)^2}

h = \frac{22.7 \ cm^3}{\pi * (3.70 cm)^2}\\\\h = 0.528 \ \ cm

Thus ; the distance by which the height of the  liquid in the cylinder change after the ice gets melted = 0.528 cm

8 0
2 years ago
The particle with charge q is now released and given a quick push; as a result, it acquires speed v. Eventually, this particle e
olga55 [171]

Initial speed of the particle is

1.497\sqrt{(1/m)/(kq^{2} /d)}

4 0
2 years ago
The refractive index n of transparent acrylic plastic (full name Poly(methyl methacrylate)) depends on the color (wavelength) of
Novosadov [1.4K]

Answer:

The angle between the blue beam and the red beam in the acrylic block is  

 \theta _d  =0.19 ^o

Explanation:

From the question we are told that

     The  refractive index of the transparent acrylic plastic for blue light is  n_F  =  1.497

     The  wavelength of the blue light is F  =  486.1 nm  =  486.1 *10^{-9} \ m

    The  refractive index of the transparent acrylic plastic for red light is  n_C  =  1.488

       The  wavelength of the red light is C =  656.3 nm  = 656.3 *10^{-9} \  m

    The incidence angle is  i  =  45^o

Generally from Snell's law the angle of refraction of the blue light  in the acrylic block  is mathematically represented as

       r_F =  sin ^{-1}[\frac{sin(i) *  n_a }{n_F} ]

Where  n_a is the refractive index of air which have a value ofn_a =  1

So

     r_F =  sin ^{-1}[\frac{sin(45) *  1 }{ 1.497} ]

      r_F  =  28.18^o

Generally from Snell's law the angle of refraction of the red light in the acrylic block is mathematically represented as

       r_C =  sin ^{-1}[\frac{sin(i) *  n_a }{n_C} ]

Where  n_a is the refractive index of air which have a value ofn_a =  1

So

     r_C =  sin ^{-1}[\frac{sin(45) *  1 }{ 1.488} ]

      r_F  =  28.37^o

The angle between the blue beam and the red beam in the acrylic block

     \theta _d  =  r_C  - r_F

substituting values

       \theta _d  = 28.37 -  28.18

       \theta _d  =0.19 ^o

 

4 0
2 years ago
An object is moving in the plane according to these parametric equations:
aniked [119]
A. The horizontal velocity is 
vx = dx/dt = π - 4πsin (4πt + π/2)
vx = π - 4π sin (0 + π/2)
vx = π - 4π (1)
vx = -3π

b. vy = 4π cos (4πt + π/2)
vy = 0

c. m = sin(4πt + π/2) / [<span>πt + cos(4πt + π/2)]

d. m = </span>sin(4π/6 + π/2) / [π/6 + cos(4π/6 + π/2)]

e. t = -1.0

f. t = -0.35

g. Solve for t 
vx = π - 4πsin (4πt + π/2) = 0
Then substitute back to solve for vxmax

h. Solve for t
vy = 4π cos (4πt + π/2) = 0
The substitute back to solve for vymax

i. s(t) = [<span>x(t)^2 + y</span>(t)^2]^(1/2)

h. s'(t) = d [x(t)^2 + y(t)^2]^(1/2) / dt

k and l. Solve for the values of t
d [x(t)^2 + y(t)^2]^(1/2) / dt = 0
And substitute to determine the maximum and minimum speeds.
5 0
2 years ago
Read 2 more answers
1) My 14V car battery could be used to charge my laptop, but I need to use an inverter to first convert it to a standard 120V. T
LenaWriter [7]

Answer:

1) Charge chord resistance is 75 Ω

2) Charge chord resistance is 6.33 Ω

Explanation:

1) To answer the question, we note that the the formula voltage is found as follows;

V = IR

Therefore,

R = \frac{V}{I} =  \frac{120}{1.6} = 75  \, \Omega

2) Where the voltage, V = 19.5 V and the current, I = 3.33 A, we have;

Initial resistance R₁ = 19.5 V/(3.33 A) = 5.86 Ω

However, to reduce the current to 1.6 A, we have;

R_T = \frac{19.5}{1.6} = 12.1875 \ \Omega

Therefore, where the resistance is found by the sum of the total resistance we have;

R_T = R₁ + Charge chord resistance

∴ 12.1875 = 5.86 + Charge chord resistance

Hence, charge chord resistance = 6.33 Ω

8 0
2 years ago
Other questions:
  • Jupiter is 317 times more massive than the Earth. An astronaut on Jupiter would _____. weigh less than on Earth weigh more than
    5·1 answer
  • Calculate the amount of energy produced in a nuclear reaction in which the mass defect is 0.187456 amu.
    13·2 answers
  • what shall be the effect on the least count of spherometer if number of divisions on its circular scale be doubled?
    12·1 answer
  • A 2 kg bar of metal weighs about 4.4 pounds. Approximately how much does it weigh in newtons?
    10·2 answers
  • Neo and Morpheus's masses have gained a velocity (not equal to zero) which means their momentum is now _____ .
    15·2 answers
  • When a submarine dives to a depth of 5.0 × 102 m, how much pressure, in pa, must its hull be able to withstand? how many times l
    12·2 answers
  • 50 POINTS! A Boy throws a ball horizontally a distance of 22m downrange from the top of a tower that is 20.0m tall. What is his
    7·1 answer
  • Alicia intends to swim to a point straight across a 100 m wide river with a current that flows at 1.2 m/s. She can swim 2.5 m/s
    12·1 answer
  • (4%) Problem 10: The standard frequency of the musical pitch called "middle C" is 261.6 Hz. show answer No Attempt How fast, in
    6·1 answer
  • Modifiable strength improvement factors include all of the following except...??
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!