answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Brrunno [24]
2 years ago
10

The PVT behavior of a certain gas is described by the equation of state: P(V − b) = RT where b is a constant. If in addition CV

is constant, show that: (a) U is a function of T only. (b) γ = const. (c) For a mechanically reversible process, P(V − b)γ = const.

Physics
1 answer:
alexdok [17]2 years ago
6 0

Answer:

shown in the attachment

Explanation:

The detailed step by step and necessary mathematical application is as shown in the attachment.

You might be interested in
A 5-ft-tall person walks away from the wall at a rate of 2 ft/sec. A spotlight is located on the ground 40 ft from the wall. How
AveGali [126]

Answer:

The rate of change of the height is - 4 ft/s

Solution:

As per the question:

Height of the person, y = 5 ft

The rate at which the person walks away, \frac{dx}{dt} = 4\ ft/s

Distance of the spotlight from the wall, x = 40 ft

Now,

To calculate the rate of change in the height, \frac{dy}{dt} of the person when, x = 10 m:

From fig 1.

\Delta ABC[\tex] ≈ [tex]\Delta PQC[\tex]Thus[tex]\frac{BC}{AB} = \frac{PQ}{QC}

\frac{y}{40} = \frac{5}{x}

xy = 200                                                                       (1)

Differentiating the above eqn w.r.t time t:

x\frac{dy}{dt} + y\frac{dx}{dt} = 0

Thus

\frac{dy}{dt} = - \frac{y}{x}\frac{dx}{dt}              (2)

From eqn (1):

When x = 10 ft

10y = 200

y = 20 ft

Using eqn (2):

\frac{dy}{dt} = - \frac{20}{10}\times 2 = - 4\ ft

8 0
2 years ago
A string, 68 cm long and fixed at both ends, vibrates with a standing wave that has 3 antinodes. the frequency is 180 hz. what i
REY [17]
The given situation below describes a standing wave because the string is fixed at both ends. A standing wave having three anti-nodes will have a wavelength that is two-thirds the length of the string. After getting the wavelength, this can be multiplied with the frequency to get the wave speed. 

For this problem: 

wave length = (2/3)(length of string: 68 cm)
wave length = (10/3 cm)

wave speed = wave length x frequency
wave speed = (10/3 cm) x (180 Hz)
wave speed = 600 cm/s or 0.6 m/s
7 0
2 years ago
Q 32.35: The isotope 235U decays by alpha emission with a half-life of 7.0 x 108 y. It also decays (rarely) by spontaneous fissi
Julli [10]

Answer:

rate of fission =5.89*10^3 1\Year

Explanation:

we know that

rate of fission is given asrate of fission = \frac{0.69}{(T_{1/2})_{fission}} *\frac{ Mass* Avogardo\ number}{Molar\ mass}

(T_{1/2})_{fission} = 3*10^{17} y

mass = 1.0 g

avogardo number = 6.02*10^23

molar mass of isotopes 235U =235

Putting all value to get rate of emission

rate of fission = \frac{0.69}{3*10^{17}} *\frac{1.0*6.02*10^{23}}{235}

rate of fission =5.89*10^3 1\Year

5 0
2 years ago
A firecracker is thrown downward from a height of 2.75m above the ground, with a speed of 3.15m/s. Ignore air resistance, determ
3241004551 [841]

Here in this question as we can see there is no air friction so we can use the principle of energy conservation

PE_i + KE_i = PE_f + KE_f

mgh_1 + \frac{1}{2}mv_i^2 = mgh_2 + \frac{1}{2}mv_f^2

now here we know that

h_1 = 2.75 m

v_i = 0

v_f = 5.23 m/s

now plug in all values in above equation

mg*2.75 + 0 = mgh + \frac{1}{2}m(5.23)^2

divide whole equation by mass "m"

9.8*2.75 = 9.8*h + \frac{1}{2}*27.35

9.8*h = 13.27

h = 1.35 m

so height of the ball from ground will be 1.35 m

4 0
1 year ago
A brass alloy is known to have a yield strength of 240 MPa (35,000 psi), a tensile strength of 310 MPa (45,000 psi), and an elas
Karo-lina-s [1.5K]

Answer:

Here Strain due to testing is greater than the strain due to yielding that is why computation of load is not possible.

Explanation:

Given that

Yield strength ,Sy= 240 MPa

Tensile strength = 310 MPa

Elastic modulus ,E= 110 GPa

L=380 mm

ΔL = 1.9 mm

Lets find strain:

Case 1 :

Strain due to elongation (testing)

ε = ΔL/L

ε = 1.9/380

ε = 0.005

Case 2 :

Strain due to yielding

\varepsilon' =\dfrac{S_y}{E}

\varepsilon' =\dfrac{240}{110\times 1000}

ε '=0.0021

Here Strain due to testing is greater than the strain due to yielding that is why computation of load is not possible.

For computation of load strain due to testing should be less than the strain due to yielding.

4 0
2 years ago
Other questions:
  • The buoyant force on an object fully submerged in a liquid depends on (select all that apply)
    13·1 answer
  • The pesticide DDT was first made by a chemical company in 1939 and became widely used worldwide. Evidence that DDT builds up in
    5·2 answers
  • Choose the answer that explains the photoelectric effect.
    7·2 answers
  • While you are studying for an upcoming physics exam, a lightning storm is brewing outside your window. Suddenly, you see a tree
    7·1 answer
  • A solenoid that is 35 cm long and contains 450 circular coils 2.0 cm in diameter carries a 1.75-A current. (a) What is the magne
    9·2 answers
  • A newly discovered planet has a mean radius of 7380 km. A vehicle on the planet\'s surface is moving in the same direction as th
    8·1 answer
  • A monkey weighs 6.00 x 102 N and swings from vine to vine. As the monkey grabs a new vine, both vines make an angle of 35.0° wit
    7·1 answer
  • 10 C of charge are placed on a spherical conducting shell. A point particle with a charge of –3C is placed at the center of the
    15·1 answer
  • What is the time spent by the alpha particle in the magnetic field?
    10·1 answer
  • the amplitude of an oscillator decreases to 36.8% of its initial value in 10.0 s. what is the value of the time constant
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!