M1 descending
−m1g + T = m1a
m2 ascending
m2g − T = m2a
this gives :
(m2 − m1)g = (m1 + m2)a
a =
(m2 − m1)g/m1 + m2
= (5.60 − 2)/(2 + 5.60) x 9.81
= = 4.65m/s^2
Answer:
Answer:
1.1 x 10^9 ohm metre
Explanation:
diameter = 1.5 mm
length, l = 5 cm
Potential difference, V = 9 V
current, i = 230 micro Ampere = 230 x 10^-6 A
radius, r = diameter / 2 = 1.5 / 2 = 0.75 x 10^-3 m
Let the resistivity is ρ.
Area of crossection
A = πr² = 3.14 x 0.75 x 0.75 x 10^-6 = 1.766 x 10^-6 m^2
Use Ohm's law to find the value of resistance
V = i x R
9 = 230 x 10^-6 x R
R = 39130.4 ohm
Use the formula for the resistance



ρ = 1.1 x 10^9 ohm metre
Explanation:
Answer:
The distance the ball moves up the incline before reversing its direction is 3.2653 m.
The total time required for the ball to return to the child’s hand is 3.2654 s.
Explanation:
When the girl is moving up:
The final velocity (v) = 0 m/s
Initial velocity (u) = 4 m/s
a = -0.25g = -0.25*9.8 = -2.45 m/s². (Negative because it is in opposite of the velocity and also it deaccelerates while going up).
Let time be t to reach the top.
Using
v = u + a×t
0 = 4 - 2.45*t
t = 1.6327 s
Since, this is the same time the ball will come back. So,
<u>Total time to go and come back = 2* 1.6327 = 3.2654 s
</u>
To find the distance, using:
v² = u² + 2×a×s
0² = 4² + 2×(-2.45)×s
s = 3.2653 m
<u>Thus, the distance the ball moves up the incline before reversing its direction is 3.2653 m.</u>
Answer:
No, both the thermometers will give the different reading.
Explanation:
Given,
- Both thermometer has same ice point =

- Both thermometer has same steam point =

- Distance between the ice point and steam point in both the thermometer is same of 100 division,
All the data given in both the thermometers are same, but the material in the thermometer is different due to this the reading at 60^o C will differ in both the thermometer. Because the reading on both the thermometer is depended upon the thermal expansion of the material inside it, but both the materials are different. Due to this the rise of fluid in the thermometer, i,e,. the volume of the fluid material in the thermometer will depend upon the thermal expansion. Hence both the material alcohol and mercury have the different thermal expansion, therefore the rise of the fluid in the thermometer also differ in both the thermometer.