answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Phantasy [73]
2 years ago
7

The A-string (440 HzHz) on a piano is 38.9 cmcm long and is clamped tightly at both ends. If the string tension is 667N, what's

its mass?
Physics
2 answers:
yarga [219]2 years ago
4 0

Answer:

Explanation:

frequency, f = 440 Hz

length, L = 38.9 cm = 0.389 m

Tension, T = 667 N

The formula for the frequency is given by

f=\frac{1}{2L}\sqrt{\frac{T}{\mu }}

where, μ = m/L (mass per unit length)

So, m=\frac{T}{4Lf^{2}}

By substituting the values

m=\frac{667}{4\times 0.389\times 440\times 440}

m = 2.21 x 10^-3 kg

m = 2.21 g

Mice21 [21]2 years ago
3 0

Answer:

Mass, m = 2.2 kg                                

Explanation:

It is given that,

Frequency of the piano, f = 440 Hz

Length of the piano, L = 38.9 cm = 0.389 m

Tension in the spring, T = 667 N

The frequency in the spring is given by :

f=\dfrac{1}{2L}\sqrt{\dfrac{T}{\mu}}

\mu=\dfrac{m}{L} is the linear mass density

On rearranging, we get the value of m as follows :

m=\dfrac{T}{4Lf^2}

m=\dfrac{667}{4\times 0.389\times (440)^2}

m = 0.0022 kg

or

m = 2.2 grams

So, the mass of the object is 2.2 grams. Hence, this is the required solution.

You might be interested in
You are called as an expert witness to analyze the following auto accident: Car B, of mass 2000 kg, was stopped at a red light w
OLga [1]

Answer:

a). va=17.23 \frac{m}{s} or 38.54 mph

b). v=38.54 mph and limit is 35 mph

c). Completely inelastic

d). Eka=192.967 kJ

Ekt=76.071 kJ

Explanation:

m_{a}=1300kg\\m_{b}=2000kg\\x_{f}=7.25m\\u_{k}=0.65

The motion is an inelastic collision so

m_{a}*v_{a}+m_{b}*v_{b}=(m_{a}+m_{b})*v_{f}

The force of the motion is contrarest by the force of friction so

F-F_{uk} =0\\F=F_{uk}\\F_{uk}=u_{k}*m*g\\F=m*a\\a=\frac{F}{m}\\ a=\frac{F_{uk}}{m}\\a=\frac{u_{k}*m*g}{m}\\a=u_{k}*g\\a=0.65*9.8\frac{m}{s^{2}} \\a=6.39\frac{m}{s^{2}}

Now with the acceleration can find the time and the velocity final that make the distance 7.25m being united

x_{f}=x_{o}+v_{o}*t+2*a*t^{2}\\x_{o}=0\\v_{o}=0\\x_{f}=2*a*t^{2}\\t^{2}=\frac{x_{f}}{2*a}\\t=\sqrt{\frac{7.25m}{6.37\frac{m}{s^{2} } } } \\t=1.06s

So the velocity final can be find using this time

v_{f}=v_{o}+a*t\\v_{o}=0\\v_{f}=6.37\frac{m}{s^{2} } *1.06s\\v_{f}=6.79 \frac{m}{s}

a).

Replacing in the first equation the final velocity can find the initial velocity

m_{a}*v_{a}+m_{b}*v_{b}=(m_{a}+m_{b})*v_{f}

v_{b}=0

v_{a}= \frac{(m_{a}+m_{b)*v_{f}}}{m_{a}}\\v_{a}= \frac{(1300+2000)*6.37}{1300}\\v_{a}=17.23 \frac{m}{s}

b).

35mph*\frac{1m}{0.000621371mi} *\frac{1h}{3600s}=15.646\frac{m}{s}

Velocity limit in m/s is 15.646 m/s and the initial velocity is 17.23 m/s

so is exceeding the speed limit in about 1.58 m/s

or in miles per hour

3.5 mph

c).

The collision is complete inelastic because any mass can be returned to the original mass, so even they are no the same mass however in the moment they move the distance 7.25m as a same mass the motion is considered completely inelastic

d).

Ek=\frac{1}{2}*m*(v)^{2}\\  Eka=\frac{1}{2}*1300kg*(17.23\frac{m}{s})^{2}\\Eka=192.967 kJ\\Ekt=\frac{1}{2}*m*(v)^{2}\\Ekt=\frac{1}{2}*3300kg*(6.79\frac{m}{s})^{2}\\Ekt=76.071 kJ

8 0
2 years ago
A large fraction of the ultraviolet (UV) radiation coming from the sun is absorbed by the atmosphere. The main UV absorber in ou
irakobra [83]

Answer:

λ = 3.2 x 10⁻⁷ m = 320 nm

Explanation:

The relationship between the velocity of electromagnetic waves (UV rays) and the their frequency is:

v = fλ

where,

v = c = speed of the electromagnetic waves (UV rays) = speed of light

c = 3 x 10⁸ m/s

f = frequency of the electromagnetic waves (UV rays) = 9.38 x 10¹⁴ Hz

λ = wavelength of the electromagnetic waves (UV rays) = ?

Therefore, substituting the values in the relation, we get:

3 x 10⁸ m/s = (9.38 x 10¹⁴ Hz)(λ)

λ = (3 x 10⁸ m/s)/(9.38 x 10¹⁴ Hz)

<u>λ = 3.2 x 10⁻⁷ m = 320 nm</u>

So, the radiation of <u>320 nm</u> wavelength is absorbed by Ozone.

3 0
2 years ago
Read 2 more answers
A simple circuit within a laptop has a single resistor with a resistance of 0.1 Ω and requires a current of 50 mA. Select the vo
jolli1 [7]

Voltage = (current) x (resistance)

The voltage across THIS RESISTOR is

V = (0.050 A) x (0.1 ohm)

V = 0.005 v (5 millivolts)


6 0
2 years ago
Read 2 more answers
A 5.00μF parallel-plate capacitor is connected to a 12.0 V battery. After the capacitor is fully charged, the battery is disconn
EastWind [94]

(a) 12.0 V

In this problem, the capacitor is connected to the 12.0 V, until it is fully charged. Considering the capacity of the capacitor, C=5.00 \mu F, the charged stored on the capacitor at the end of the process is

Q=CV=(5.00 \mu F)(12.0 V)=60 \mu C

When the battery is disconnected, the charge on the capacitor remains unchanged. But the capacitance, C, also remains unchanged, since it only depends on the properties of the capacitor (area and distance between the plates), which do not change. Therefore, given the relationship

V=\frac{Q}{C}

and since neither Q nor C change, the voltage V remains the same, 12.0 V.

(b) (i) 24.0 V

In this case, the plate separation is doubled. Let's remind the formula for the capacitance of a parallel-plate capacitor:

C=\frac{\epsilon_0 \epsilon_r A}{d}

where:

\epsilon_0 is the permittivity of free space

\epsilon_r is the relative permittivity of the material inside the capacitor

A is the area of the plates

d is the separation between the plates

As we said, in this case the plate separation is doubled: d'=2d. This means that the capacitance is halved: C'=\frac{C}{2}. The new voltage across the plate is given by

V'=\frac{Q}{C'}

and since Q (the charge) does not change (the capacitor is now isolated, so the charge cannot flow anywhere), the new voltage is

V'=\frac{Q}{C'}=\frac{Q}{C/2}=2 \frac{Q}{C}=2V

So, the new voltage is

V'=2 (12.0 V)=24.0 V

(c) (ii) 3.0 V

The area of each plate of the capacitor is given by:

A=\pi r^2

where r is the radius of the plate. In this case, the radius is doubled: r'=2r. Therefore, the new area will be

A'=\pi (2r)^2 = 4 \pi r^2 = 4A

While the separation between the plate was unchanged (d); so, the new capacitance will be

C'=\frac{\epsilon_0 \epsilon_r A'}{d}=4\frac{\epsilon_0 \epsilon_r A}{d}=4C

So, the capacitance has increased by a factor 4; therefore, the new voltage is

V'=\frac{Q}{C'}=\frac{Q}{4C}=\frac{1}{4} \frac{Q}{C}=\frac{V}{4}

which means

V'=\frac{12.0 V}{4}=3.0 V

3 0
2 years ago
Follow these steps to solve this problem: Two identical loudspeakers, speaker 1 and speaker 2, are 2.0 m apart and are emitting
horsena [70]

Answer:

Explanation:

Wave length of sound from each of the  speakers = 340 / 1700 = .2 m = 20 cm

Distance between first speaker and the given point = 4 m.

Distance between second speaker and the given sound

= √ 4² + 2² = √16 +4 = √20 = 4.472 m

Path difference = 4.472 - 4 = .4722 m.

Path difference / wave length = 0.4772 / 0.2 = 2.386

This is a fractional integer which is neither an odd nor an  even multiple of half wavelength. Hence this point of neither a perfect constructive nor a perfect destructive interference.

7 0
2 years ago
Other questions:
  • The potential energy of a 40 kg cannon ball is 14000 J. How high was the cannon ball to have this much potential energy?
    14·1 answer
  • The graph indicates Linda’s walk.
    8·2 answers
  • What is the least possible initial kinetic energy in the oxygen atom could have and still excite the cesium atom?
    12·1 answer
  • A boy drags a suitcase along the ground with a force of 100 N. If the frictional force opposing the motion of the suitcase is 50
    15·1 answer
  • In a simple electric circuit, ohm's law states that v=irv=ir, where vv is the voltage in volts, ii is the current in amperes, an
    15·1 answer
  • A 1.0 104 kg spacecraft is traveling through space with a speed of 1200 m/s relative to Earth. A thruster fires for 2.0 min, exe
    9·1 answer
  • A factory robot drops a 10 kg computer onto a conveyor belt running at 3.1 m/s. The materials are such that
    9·1 answer
  • An atom of neon has a radius rNe = 38. pm and an average speed in the gas phase at 25°C of 350.⁢/ms. Suppose the speed of a neon
    10·1 answer
  • At the normal boiling temperature of iron, TB = 3330 K, the rate of change of the vapor pressure of liquid iron with temperature
    16·2 answers
  • An astronaut holds a rock 100m above the surface of Planet XX. The rock is then thrown upward with a speed of 15m/s, as shown in
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!