Answer:
a) xf = 5.1 m
b) u = 0.304
c) x = 10.3 m
Explanation:
we will use the following formula:
u = 0.1 + A*x
Si x = 12.5 m, u = 0.6
Clearing A:
A = 0.5/12.5 = 0.04 m^-1
a) we have to:
W = Ekf - Eki
where Ekf = final kinetic energy
Eki = initial kinetic energy
9.8*(0.1xf + ((0.04*xf^2)/(2))) = (4.5^2)/(2)
Clearing xf, we have:
xf = 5.1 m
b) Replacing values for u:
u = 0.1 + (0.04*5.1) = 0.304
c) Wf = Ekf - Eki
-u*m*x*g = 0 - (m*v^2)/2
Clearing x:
x = v^2/(2*u*g) = (4.5^2)/(2*0.1*9.8) = 10.3 m
<span>The skier will transform their gravitational energy into mostly kinetic energy (with a minor amount transformed into heat from the friction of the skis across the snow and air friction). Once the skier hits the snowdrift, their kinetic energy is transferred into the snow which moves when they strike it due to the kinetic energy that is now in the snow. Along with again a minor amount of heat energy transferred as they move through the snowdrift.</span>
Good work on solving part a).
b) may look complicated, but it's not too bad.
It says that the body is 25% efficient in converting fat to mechanical energy.
In other words, only 25% of the energy we get from our stored fat shows up
in the physical, mechanical moving around that we do. (The rest becomes
heat, which dissipates into the environment as we keep our bodies warm,
breathe hot air out,and perspire.)
You already know how much mechanical energy the climber needed to lift
himself to the top of the mountain... 2.4x10⁶ joules.
That's 25% of what he needs to convert in order to accomplish the climb.
He needs to pull 4 times as much energy out of fat.
-- Fat energy required = 4 x (2.4 x 10⁶) = 9.6 x 10⁶ joules.
-- Amount stored in 1kg of fat = 3.8 x 10⁷ joules
-- Portion of a kilogram he needs to use = (9.6 x 10⁶) / (3.8 x 10⁷)
Note:
That much of a kilogram weighs about 8.9 ounces ... which shows why it's so
hard to lose weight with physical exercise alone. It also helps you appreciate
that fat is much more efficient at storing energy than batteries are ... that one
kilogram of fat stores the amount of energy used by a 100-watt light bulb, to
burn for 105 hours (more than 4-1/2 days ! ! !)
Answer:
In this case, the index of seawater replacement is 1.33, the index of refraction of air is 1, which is why the angle of replacement is less than the incident angle, so the fish seems to be closer
In the opposite case, when the fish looked at the face of the man, the angle of greater reason why it seems to be further away
Explanation:
This exercise can be analyzed with the law of refraction that establishes that a ray of light when passing from one medium to another with a different index makes it deviate from its path,
n₁ sin θ₁ = n₂ sin θ₂
where n₁ and n₂ are the refractive indices of the incident and refracted means and the angles are also for these two means.
In this case, the index of seawater replacement is 1.33, the index of refraction of air is 1, which is why the angle of replacement is less than the incident angle, so the fish seems to be closer
1 sin θ₁ = 1.33 sin θ₂
θ₂ = sin⁻¹ ( 1/1.33 sin θ₁)
In the opposite case, when the fish looked at the face of the man, the angle of greater reason why it seems to be further away
The correct answer is <span>3)

.
</span>
In fact, the total energy of the rock when it <span>leaves the thrower's hand is the sum of the gravitational potential energy U and of the initial kinetic energy K:
</span>

<span>As the rock falls down, its height h from the ground decreases, eventually reaching zero just before hitting the ground. This means that U, the potential energy just before hitting the ground, is zero, and the total final energy is just kinetic energy:
</span>

<span>
But for the law of conservation of energy, the total final energy must be equal to the tinitial energy, so E is always the same. Therefore, the final kinetic energy must be
</span>

<span>
</span>