answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
trasher [3.6K]
2 years ago
5

A large crate with mass m rests on a horizontal floor. The static and kinetic coefficients of friction between the crate and the

floor are μs and μk, respectively. A woman pushes downward on the crate at an angle θ below the horizontal with a force F⃗.
a) What is the magnitude of the force vector F⃗ required to keep the crate moving at constant velocity?

Express your answer in terms of m, g, θ, and μk.

b) If μs is greater than some critical value, the woman cannot start the crate moving no matter how hard she pushes. Calculate this critical value of μs.

Express your answer in terms of θ.

Physics
2 answers:
weeeeeb [17]2 years ago
6 0

Answer:

a) F = μk*m*g/(cosθ - μk*sinθ)

b) μs = cotθ

Explanation:

a)

Given that the body is not moving in the y-axis direction, then:

- F*sinθ - m*g + N = 0     (1)

where m*g is the weight of the body and N is the normal force.

Given that the body is moving at constant velocity in the x-axis direction, then:

F*cosθ - f = 0      (2)

where f is the friction, computed as:

f =  μk*N      (3)

Combining equations 1, 2 and 3:

F*cosθ = μk*(F*sinθ + m*g)

Isolating F:

F*cosθ = μk*F*sinθ + μk*m*g

F*(cosθ - μk*sinθ) = μk*m*g

F = μk*m*g/(cosθ - μk*sinθ)

b)

Analogously, for the static case we get:

F = μs*m*g/(cosθ - μs*sinθ)

where now F is the minimum force to move the crate. Notice that F must be positive, so:

cosθ ≥ μs*sinθ

In the limit case:

cosθ = μs*sinθ

μs = cotθ

rjkz [21]2 years ago
3 0

Answer:

a) F=\frac{\mu_{k}mg}{cos \theta-\mu_{k}sin \theta}

b) \mu_{s}=\frac{Fcos \theta}{Fsin \theta +mg}

Explanation:

In order to solve this problem we must first do a drawing of the situation and a free body diagram. (Check attached picture).

After a close look at the diagram and the problem we can see that the crate will have a constant velocity. This means there will be no acceleration to the crate so the sum of the forces must be equal to zero according to Newton's third law. So we can build a sum of forces in both x and y-direction. Let's start with the analysis of the forces in the y-direction:

\Sigma F_{y}=0

We can see there are three forces acting in the y-direction, the weight of the crate, the normal force and the force in the y-direction, so our sum of forces is:

-F_{y}-W+N=0

When solving for the normal force we get:

N=F_{y}+W

we know that

W=mg

and

F_{y}=Fsin \theta

so after substituting we get that

N=F sin θ +mg

We also know that the kinetic friction is defined to be:

f_{k}=\mu_{k}N

so we can find the kinetic friction by substituting for N, so we get:

f_{k}=\mu_{k}(F sin \theta +mg)

Now we can find the sum of forces in x:

\Sigma F_{x}=0

so after analyzing the diagram we can build our sum of forces to be:

-f+F_{x}=0

we know that:

F_{x}=Fcos \theta

so we can substitute the equations we already have in the sum of forces on x so we get:

-\mu_{k}(F sin \theta +mg)+Fcos \theta=0

so now we can solve for the force, we start by distributing \mu_{k} so we get:

-\mu_{k}F sin \theta -\mu_{k}mg)+Fcos \theta=0

we add \mu_{k}mg to both sides so we get:

-\mu_{k}F sin \theta +Fcos \theta=\mu_{k}mg

Nos we factor F so we get:

F(cos \theta-\mu_{k} sin \theta)=\mu_{k}mg

and now we divide both sides of the equation into (cos \theta-\mu_{k} sin \theta) so we get:

F=\frac{\mu_{k}mg}{cos \theta-\mu_{k}sin \theta}

which is our answer to part a.

Now, for part b, we will have the exact same free body diagram, with the difference that the friction coefficient we will use for this part will be the static friction coefficient, so by following the same procedure we followed on the previous problem we get the equations:

f_{s}=\mu_{s}(F sin \theta +mg)

and

F cos θ = f

when substituting one into the other we get:

F cos \theta=\mu_{s}(F sin \theta +mg)

which can be solved for the static friction coefficient so we get:

\mu_{s}=\frac{Fcos \theta}{Fsin \theta +mg}

which is the answer to part b.

You might be interested in
The model of the atom has changed as scientists have gathered new evidence. Four models of the atom are shown below, but one imp
nexus9112 [7]

Answer: Dalton’s model

Explanation:

In the attached image we can see four atomic models labeled with four letters:

W represents the current and accepeted atomic model: a nucleus with an electron cloud, where the orbit and position of the electrons around the nucleus is defined by specific regions (associated with specific energy levels) where there is a greater probability of finding the electron at any given moment. It is important to note this model was improved by the works in quantum physics done by Louis de Broglie and Erwin Schrodinger.

X represents Rutherford's model (This model was proposed after Thomson's model). Ernest Rutherford conducted a series of experiments in order to corroborate Thomson's atomic model. However the results of the experiment led him to find out there is a concentration of charge in the atom's core (which was later called nucleus) surrounded by electrons.  This lead to a new atomic model, in which the atom has a positive charged nucleus surrounded by negative charged particles that move similar to the orbit of the planet around the Sun.

Y represents Thomson's model, also called  the <em>plum pudding</em> model. This scientific found out that atoms contain small subatomic particles with a negative charge (later called electrons). However, taking into consideration that at that time there was still no evidence of the atom nucleus, Thomson thought the electrons were immersed in the atom of positive charge that counteracted the negative charge of the electrons. Just like the raisins embedded in a pudding or bread.

Z represents Bohr's model. This model was proposed by the danish physicist Niels Bohr after Rutherford's model. In fact, this model was Rutherford's model with the following addition: electrons orbit the nucleus (like planets around the sun) in specific orbits at different energy levels around the nucleus.

So, the only missing model is <u>Dalton's model</u>, which was the first atomic model:  the atom represented as a solid, indestructible and indivisible mass. An idea that was already accepted by that time since the ancient Greeks.

4 0
2 years ago
Read 2 more answers
As the external magnetic field decreases, an induced current flows in the coil. what is the direction of the induced magnetic fi
GrogVix [38]
As the external magnetic field decreases, an induced current flows in the coil. The direction of the induced magnetic field would be pointing to the screen. The flux through the coil is said to decrease. In order to counter this change, the coil would generate or produce a magnetic field that is induced that would be pointing to the same direction as the external field that is flowing which is into the the screen. This is according to Lenz's law or the right hand rule. It states that an induced current in a circuit that is due to the change or motion in   magnetic field should be directed opposing to the change in the flux.
4 0
2 years ago
A worker pushes a 7 kg shipping box along a roller track. Assume friction is small enough to be ignored because of the rollers.
Bingel [31]

Answer:

a) Fₓ = 23.5 N

b) Net force = Fₓ

Explanation:

An image of the question as described is attached to this solution.

From the image attached, the forces acting on the box include the weight of the box, the normal reaction of the surface on the box, the applied force on the box and the Frictional force opposing the motion of the box (which is negligible and equal to 0)

a) From the diagram, the horizontal component of the force is

Fₓ = 25 cos 20° = 23.49 N = 25 N

b) Again, from the diagram attached, doing a force balance on the box, in the horizontal direction, we obtain

Net force = Fₓ - Frictional force

But frictional force is 0 N

Net force = Fₓ

Hope this Helps!!!

6 0
2 years ago
Calculate the current through a 10.0-m long 22-gauge nichrome wire with a radius of 0.321 mm if it is connected across a 12.0-V
Kipish [7]

Answer:

Therefore,

Current through Nichrome wire is 0.3879 Ampere.

Explanation:

Given:

Length = l = 10 meter

Radius = r = 0.321\ mm =0.321\times 10^{-3}\ meter

Resistivity=\rho=1.00\times 10^{-6}\ ohm\ meter

V = 12 Volt

To Find:

Current, I =?

Solution:

Resistance for 0.0-m long 22-gauge nichrome wire with a radius of 0.321 mm if it is connected across a 12.0-V battery given as

R=\dfrac{\rho\times l}{A}

Where,

R = Resistance

l = length

A = Area of cross section = πr²

\rho=Resistivity=1.00\times 10^{-6}\ ohm\ meter

Substituting the values we get

R=\dfrac{1\times 10^{-6}\times 10}{3.14\times (0.321\times 10^{-3})^{2}}

R=\dfrac{1\times 10^{-5}}{3.23\times 10^{-7}}

R=\dfrac{1\times 10^{2}}{3.23}

R=30.95\ ohm

Now by Ohm's Law,

V= I\times R

Substituting the values we get

I=\dfrac{V}{R}=\dfrac{12}{30.95}=0.3876\ Ampere

Therefore,

Current through Nichrome wire is 0.3879 Ampere.

4 0
1 year ago
The Slowing Earth The Earth's rate of rotation is constantly decreasing, causing the day to increase in duration. In the year 20
NNADVOKAT [17]

Answer:

The average angular acceleration of the Earth, α  = 6.152 X 10⁻²⁰ rad/s²

Explanation:

Given data,

The period of 365 rotation of Earth in 2006, T₁ = 365 days, 0.840 sec

                                                                                  = 3.1536 x 10⁷ +0.840

                                                                                 = 31536000.84 s

The period of 365 rotation of Earth in 2006, T₀ = 365 days

                                                                               = 31536000 s

Therefore, time period of one rotation on 2006, Tₐ = 31536000.84/365

                                                                                   = 86400.0023 s

The time period of rotation is given by the formula,

                                <em>Tₐ = 2π /ωₐ</em>

                                 ωₐ = 2π / Tₐ

Substituting the values,

                                  ωₐ = 2π /  365.046306        

                                      = 7.272205023 x 10⁻⁵ rad/s

Therefore, the time period of one rotation on 1906, Tₓ = 31536000/365

                                                                                    = 86400 s

Time period of rotation,

                                   Tₓ = 2π /ωₓ

                                    ωₓ = 2π / T

                                           =  2π /86400

                                          = 7.272205217  x 10⁻⁵ rad/s

The average angular acceleration

                                   α  = (ωₓ -   ωₐ) /  T₁

             = (7.272205217  x 10⁻⁵ - 7.272205023 x 10⁻⁵) / 31536000.84

                                    α  = 6.152 X 10⁻²⁰ rad/s²

Hence the average angular acceleration of the Earth, α  = 6.152 X 10⁻²⁰ rad/s²

3 0
2 years ago
Other questions:
  • Assume that the light from the flashlight is light from a star. Identify the spot where the light from this “star” is most conce
    12·2 answers
  • If electromagnetic radiation a has a lower frequency than electromagnetic radiation b the wavelength of a is
    6·1 answer
  • The vacuum pressure of a condenser is given to be 80 kpa. if the atmospheric pressure is 98 kpa, what is the gage pressure and a
    13·1 answer
  • How did the team determine that the body was placed in a wood chipper?
    10·2 answers
  • a ball on a string makes 30.0 revolutions in 14.4s, in a circle of radius 0.340m. what is its period.(unit=s)
    12·1 answer
  • A package is dropped from a helicopter that is descending steadily at a speed v0. After t seconds have elapsed, consider the fol
    13·2 answers
  • I take 1.0 kg of ice and dump it into 1.0 kg of water and, when equilibrium is reached, I have 2.0 kg of ice at 0°C. The water w
    6·1 answer
  • Consider two slides, both of the same height. One is long and the other is short. From which slide will a child have a greater f
    12·1 answer
  • Identify the row that contains two scalars and one vector quantity: Distance Acceleration Velocity Speed Mass Acceleration Dista
    12·1 answer
  • A black, totally absorbing piece of cardboard of area A = 1.7 cm2 intercepts light with an intensity of 8.1 W/m2 from a camera s
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!