You can't find the acceleration of the ball. The graph tells the force, but you'd also need to know the mass of the ball.
Answer:
The stars are moving away from us.
Explanation:
The observed wavelengths of hydrogen transition for stars A and B (660.0 nm and 666 nm respectively) are greater than that observed in the laboratory (656.2 nm). The observed long wavelengths for the stars means that the light from the stars is red-shifted.
According to the Doppler effect, red-shifted light means that the source is moving a way from the observer; therefore, we arrive at the conclusion that the stars A and B are moving away from us.
Answer:R=1607556m
θ=180degrees
Explanation:
d1=74.8m
d2=160.7km=160.7km*1000
d2=160700m
d3=80m
d4=198.1m
Using analytical method :
Rx=-(160700+75*cos(41.8))= -160755.9m
Ry= -(74.8+75sin(41.8))-198.1=73m
Magnitude, R:
R=√Rx+Ry
R=√160755.9^2+20^2=160755.916
R=160756m
Direction,θ:
θ=arctan(Rx/Ry)
θ=arctan(-73/160755.9)
θ=-7.9256*10^-6
Note that θ is in the second quadrant, so add 180
θ=180-7.9256*10^6=180degrees
Answer:Thus, The magnetic field around a current-carrying wire is <u><em>directly</em></u> proportional to the current and <u><em>inversely</em></u> proportional to the distance from the wire. If the current triples while the distance doubles, the strength of the magnetic field increases by <u><em>one and half (1.5)</em></u> times.
Explanation:
Magnetic field around a long current carrying wire is given by

where B= magnetic field
permeability of free space
I= current in the long wire and
r= distance from the current carrying wire
Thus, The magnetic field around a current-carrying wire is <u><em>directly</em></u> proportional to the current and <u><em>inversely</em></u> proportional to the distance from the wire.
Now if I'=3I and r'=2r then magnetic field B' is given by

Thus If the current triples while the distance doubles, the strength of the magnetic field increases by <u><em>one and half (1.5)</em></u> times.