Answer:
Earth's axis is tilted relative to its orbital plane.
Earth orbits around the Sun, completing one orbit each year
Explanation:
The earth tilt at an angle causes the sun rays to hit the earth surface around the globe differently. Due to the oblique angle that the rays hit the subtropics and poles, there is less heat intensity compared to the equator where the sun rays hit the earth's surface at a more or less right angle.
The earth rotation around the sun also causes seasons coupled with the earth’s tilts. As the earth rotates, in one point in the orbit, the northern or southern hemispheres will be tilted towards the sun. The phenomenon varies the local temperatures of particular regions of the earth hence driving seasonal climatic changes.
Answer:
correct is d) a ’= g / 2
Explanation:
For this exercise let's use the kinematics equations
On earth
v = v₀ - a t
a = (v₀- v) / T
On planet X
v = v₀ - a' t’
a ’= (v₀-v) / 2T
Let's substitute the land values in plot X
a’= a / 2
Now let's use Newton's second law
W = ma
m g = m a
a = g
We substitute
a ’= g / 2
So we see that on planet X the acceleration is half the acceleration of Earth's gravity
Answer:
t = 2 s
Explanation:
As we know that fish is pulled upwards with uniform maximum acceleration
then we will have

here we know that maximum possible acceleration of so that string will not break is given as

now we have


now for such acceleration we can use kinematics


t = 2 s
<h3>Question:</h3>
A 2.0-cm length of wire centered on the origin carries a 20-A current directed in the positive y direction. Determine the magnetic field at the point x = 5.0m on the x-axis.
<h3>
Answer:</h3>
1.6nT [in the negative z direction]
<h2>
Explanation:</h2>
The magnetic field, B, due to a distance of finite value b, is given by;
B = (μ₀IL) / (4πb
) -----------(i)
Where;
I = current on the wire
L = length of the wire
μ₀ = magnetic constant = 4π × 10⁻⁷ H/m
From the question,
I = 20A
L = 2.0cm = 0.02m
b = 5.0m
Substitute the necessary values into equation (i)
B = (4π × 10⁻⁷ x 20 x 0.02) / (4π x 5.0
)
B = (10⁻⁷ x 20 x 0.02) / (5.0
)
B = (10⁻⁷ x 20 x 0.02) / (5.0
)
B = (10⁻⁷ x 20 x 0.02) / (25.0)
B = 1.6 x 10⁻⁹T
B = 1.6nT
Therefore, the magnetic field at the point x = 5.0m on the x-axis is 1.6nT.
PS: Since the current is directed in the positive y direction, from the right hand rule, the magnetic field is directed in the negative z-direction.
Answer:
A thin layer of oil with index of refraction ng = 1.47 is floating above the water. The index of refraction of water is nw = 1.3. The index of refraction of air is na= 1. A light with wavelength λ = 775 nm goes in from the air to oil and water.
Part (a) Express the wavelength of the light in the oil, λ₀, in terms of λ and n⁰ (b) Express the minimum thickness of the film that will result in destructive interference, t min, in terms of λ o
(c) Express tmin in terms of λ and no.
(d) Solve for the numerical value of tmin in nm.
Explanation:
n₀ = 1.47
refraction of water = 1.3
refraction of air = 1
wavelength λ = 775 nm
(a) wavelength of light in water ⇒ λ₀ = λ / n₀
(b) minimum thickness of the film that will result in destructive interference
t(min) = λ₀ / 2
(c) the express t(min)
t = λ /2n₀
(d) the thickness is
t = 775 / 2(1.47)
= 263.61 nm