They think everything is involved with tech , some business like going old school , it’s artificiaciality is off meaning consequences aren’t actually accurate like in real life , lack of flexibility can’t change anything because it’s programmed so you can’t actually act question or change scenarios ,it costs too much as well , can be health risk can cause stress and anxiety,
Answer:
C
Explanation:
Q=mcΔθ
Q=quantity of heat , m= mass of the storage rock
Δθ= temperature change.
m= Q/(cΔθ)
Q=5.4
Δθ=62°C-20°C
=42°C
c=0.21cal/g.°C

m≈6100000g
m≈6100kg
Answer:
σ₁ =
C/m²
σ₂ =
C/m²
Explanation:
The given data :-
i) The radius of smaller sphere ( r ) = 5 cm.
ii) The radius of larger sphere ( R ) = 12 cm.
iii) The electric field at of larger sphere ( E₁ ) = 358 kV/m. = 358 * 1000 v/m


Q₁ = 572.8
C
Since the field inside a conductor is zero, therefore electric potential ( V ) is constant.
V = constant
∴

=
C
Surface charge density ( σ₁ ) for large sphere.
Area ( A₁ ) = 4 * π * R² = 4 * 3.14 * 0.12 = 0.180864 m².
σ₁ =
=
=
C/m².
Surface charge density ( σ₂ ) for smaller sphere.
Area ( A₂ ) = 4 * π * r² = 4 * 3.14 * 0.05² =0.0314 m².
σ₂ =
=
=
C/m²
The equation to be used is written as:
ρ = nA/VcNₐ
where
ρ is the density
n is the number of atoms in unit cell (for FCC, n=4)
A is the atomic weight
Vc is the volume of the cubic cell which is equal to a³, such that a is the side length (for FCC, a = 4r/√2, where r is the radis)\
Nₐ is Avogradro's constant equal to 6.022×10²³ atoms/mol
r = 0.1387 nm*(10⁻⁹ m/nm)*(100 cm/1m) = 1.387×10⁻⁸ cm
a = 4(1.387×10⁻⁸ cm)/√2 = 3.923×10⁻⁸ cm
V = a³ = (3.923×10⁻⁸ cm)³ = 6.0376×10⁻²³ cm³
ρ = [(4 atoms)(195.08 g/mol)]/[(6.0376×10⁻²³ cm³)(6.022×10²³ atoms/mol)]
ρ = 21.46 g/cm³