Answer:
Decreasing the distance between Hox and Blox, increasing the mass of Hox, or increasing the mass of Hox and Blox.
Explanation:
The gravity force is directly proportional to the mass of the bodies and inversely proportional to the square of the distance that separates them.
Or
If we decrease the distance between both planets (Hox and Blox), the gravitational pull between them will increase.
On the other hand, if we keep the distance between Hox and Blox, but we increase the mass of one of them, or increase the mass of both, the gravitational pull between them will also increase.
Answer:
The distance between the earth and the star is increasing.
Explanation:
When we observe an object and its electromagnetic radiation has been displaced to blue, it means that it is getting closer to us, causing the light waves it emits to get closer together and its wavelength to decrease towards blue, this is knowm as blueshift.
On the contrary, when an object is rapidly moving away from us, the light waves or electromagnetic radiation it emits have been stretched from their normal wavelength to a longer wavelength, towards the red part of the spectrum. This is known as redshift.
This phenomenon of changes in wavelength and frequency due to movement (whether the source approaches or moves away) is described by the Doppler effect.
So for this case because the light we perceive from the star has moved to the red part of the visible spectrum, we can conclude that it is moving away from the earth, and that the distance between the star and the earth is increasing.
<em>projectile can only follow the straight line path when it is launched upward straightly so the correct option is <u>90 degree with respect to horizontal x -axis ..:)</u></em>
When the metals touch
together, half the charge of the charged metal flows to the other because the
electrons all repel each other. Therefore this also means that each metal ball
contains the same amount of electrons. Each ball has 5^10 electrons, this is
equivalent to a total charge of:
Q1 = Q2 = (1.602 * 10^-19
coulombs / electron) 5^10 electrons = Q
Q = 1.564 * 10^-12 C
Now using the Coulombs
law to find for the electric force:
F = k q1 q2 / r^2 = k (Q)^2
/ r^2
where k is a contant = 9
* 10^9 N m^2 / C^2
r = the distance of the
two metals = 0.2 m
So,
F = (9 * 10^9 N m^2 /
C^2) (1.564 * 10^-12 C)^2 / (0.2 m)^2
F = 5.51 * 10^-13 N
Since the two metals
repel therefore they are the one which exerts the force hence the magnitude
must be negative:
<span>F = - 5.51 * 10^-13 N</span>
Answer:
46% (0.46)
Explanation:
temperature of hot reservoir (Th) = 1.3 kJ
temperature of COLD reservoir (Tc) = 0.7 kJ
Efficiency = 1 - (Tc/Th)
Efficiency = 1 - (0.7/1.3) = 0.46 = 0.46 x 100 = 46 %