<span>4.5 m/s
This is an exercise in centripetal force. The formula is
F = mv^2/r
where
m = mass
v = velocity
r = radius
Now to add a little extra twist to the fun, we're swinging in a vertical plane so gravity comes into effect. At the bottom of the swing, the force experienced is the F above plus the acceleration due to gravity, and at the top of the swing, the force experienced is the F above minus the acceleration due to gravity. I will assume you're capable of changing the velocity of the ball quickly so you don't break the string at the bottom of the loop.
Let's determine the force we get from gravity.
0.34 kg * 9.8 m/s^2 = 3.332 kg m/s^2 = 3.332 N
Since we're getting some help from gravity, the force that will break the string is 9.9 N + 3.332 N = 13.232 N
Plug known values into formula.
F = mv^2/r
13.232 kg m/s^2 = 0.34 kg V^2 / 0.52 m
6.88064 kg m^2/s^2 = 0.34 kg V^2
20.23717647 m^2/s^2 = V^2
4.498574938 m/s = V
Rounding to 2 significant figures gives 4.5 m/s
The actual obtainable velocity is likely to be much lower. You may handle 13.232 N at the top of the swing where gravity is helping to keep you from breaking the string, but at the bottom of the swing, you can only handle 6.568 N where gravity is working against you, making the string easier to break.</span>
Answer:
8.56 m/s2
Explanation:
Using law of energy conservation while taking into account of the rotational and translation kinetic energy, when the solid cylinder rolls down the incline we have the potential energy converted to kinetic energy:


where m is the mass,
is the moments of inertia of the solid cylinder
is the angular speed of the cylinder



So if you plot a liner chart of h vs
and get a slope of 6.42 then that means 3/(4g) = 6.42 so 
The gravitational acceleration on this planet is 8.56 m/s2
The answer is C because when white light enters a prism, its gets separated into component colors which are red, orange, yellow, green, blue, indigo, and violet. This can also be referred to as <span>dispersion.</span>
Answer:
Incomplete question
Check attachment for the given diagram
Explanation:
Given that,
Initial Velocity of drum
u=3m/s
Distance travelled before coming to rest is 6m
Since it comes to rest, then, the final velocity is 0m/s
v=3m/s
Using equation of motion to calculate the linear acceleration or tangential acceleration
v²=u²+2as
0²=3²+2×a×6
0=9+12a
12a=-9
Then, a=-9/12
a=-0.75m/s²
The negative sign shows that the cylinder is decelerating.
Then, a=0.75m/s²
So, using the relationship between linear acceleration and angular acceleration.
a=αr
Where
a is linear acceleration
α is angular acceleration
And r is radius
α=a/r
From the diagram r=250mm=0.25m
Then,
α=0.75/0.25
α =3rad/sec²
The angular acceleration is =3rad/s²
b. Time take to come to rest
Using equation of motion
v=u+at
0=3-0.75t
0.75t=3
Then, t=3/0.75
t=4 secs
The time take to come to rest is 4s
Answer:
the ice cube melted due to the absorption of heat from the surrounding of the ice, the has a heat capacity of zero so it turns it from its solid state to its liquid state which leads to the formation of the puddle