20m away
the dog was 60m away from. you subtract 40m since it is 10m/s x 4 seconds
Answer: A) 
Explanation:
The equation for the moment of inertia
of a sphere is:
(1)
Where:
is the moment of inertia of the planet (assumed with the shape of a sphere)
is the mass of the planet
is the radius of the planet
Isolating
from (1):
(2)
Solving:
(3)
Finally:
Therefore, the correct option is A.
Answer:
From the initial height h
Explanation:
When a material or substance is drop from a height h, it possesses potential energy, immediately it is dropped from that height, the potential energy is gradually converted to kinetic energy, it gets to a point where the potential energy equals the kinetic energy, as the material touches the ground, all potential energy has been converted to kinetic energy already
Answer:
Bank angle = 35.34o
Explanation:
Since the road is frictionless,
Tan (bank angle) = V^2/r*g
Where V = speed of the racing car in m/s, r = radius of the arc in metres and g = acceleration due to gravity in m/s^2
Tan ( bank angle) = 40^2/(230*9.81)
Tan (bank angle) = 0.7091
Bank angle = tan inverse (0.7091)
Bank angle = 35.34o
The position function x(t) of a particle moving along an x axis is 
a) The point at which particle stop, it's velocity = 0 m/s
So dx/dt = 0
0 = 0- 12t = -12t
So when time t= 0, velocity = 0 m/s
So the particle is starting from rest.
At t = 0 the particle is (momentarily) stop
b) When t = 0

SO at x = 4m the particle is (momentarily) stop
c) We have 
At origin x = 0
Substituting

t = 0.816 seconds or t = - 0.816 seconds
So when t = 0.816 seconds and t = - 0.816 seconds, particle pass through the origin.