answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
beks73 [17]
2 years ago
13

A sharp edged orifice with a 50 mm diameter opening in the vertical side of a large tank discharges under a head of 5m. If the c

oefficient of contraction is 0.62 and the coefficientof velocity is 0.98, what is thedischarge?

Physics
1 answer:
Sever21 [200]2 years ago
3 0

Answer:

0.24

Explanation:

See attached file

You might be interested in
A skateboarder with mass ms = 54 kg is standing at the top of a ramp which is hy = 3.3 m above the ground. The skateboarder then
Elan Coil [88]

Answer:

A) W_{ff} =-744.12J

B) F_f=-W_{ff}*sin\theta /hy = 112.75N

C) F_{f2}=207.58N

Explanation:

This question is incomplete. The full question was:

<em>A skateboarder with mass ms = 54 kg is standing at the top of a ramp which is hy = 3.3 m above the ground. The skateboarder then jumps on his skateboard and descends down the ramp. His speed at the bottom of the ramp is vf = 6.2 m/s.  </em>

<em>Part (a) Write an expression for the work, Wf, done by the friction force between the ramp and the skateboarder in terms of the variables given in the problem statement.  </em>

<em>Part (b) The ramp makes an angle θ with the ground, where θ = 30°. Write an expression for the magnitude of the friction force, fr, between the ramp and the skateboarder.  </em>

<em>Part (c) When the skateboarder reaches the bottom of the ramp, he continues moving with the speed vf onto a flat surface covered with grass. The friction between the grass and the skateboarder brings him to a complete stop after 5.00 m. Calculate the magnitude of the friction force, Fgrass in newtons, between the skateboarder and the grass.</em>

For part A), we make a balance of energy to calculate the work done by the friction force:

W_{ff}=\Delta E

W_{ff}=1/2*m*vf^2-m*g*hy

W_{ff}=-744.12J

For part B), we use our previous value for the work:

W_{ff}=-F_f*(hy/sin\theta)   Solving for friction force:

F_f=-W_{ff}*sin\theta /hy

F_f=112.75N

For part C), we first calculate the acceleration by kinematics and then calculate the module of friction force by dynamics:

Vf^2=Vo^2+2*a*d

Solving for a:

a=-3.844m/s^2

Now, by dynamics:

|F_f|=|m*a|

|F_f|=207.58N

8 0
2 years ago
According to the saffir/simpson scale, what storm surge and type of damage was most likely experienced in homestead, florida whi
Naddika [18.5K]

Answer:

Explanation:

The Saffir-Simpson Hurricane Wind Scale gives 1 to 5 rating based on a hurricane's wind speed, storm surge and potential property damage. It rates according to categories. When placed at Hurricanes of Category 3 and above, they are termed major catastrophic hurricanes because of their potential for loss of life and damages of property. Ratings at Category 1 and 2 storms are dangerous but can be prevented by following directed measures.

Florida situated directly in the hurricane at east coast , had experiened Category 1- Category 5 ratings from hurricane and noticed in Land fall in Florida since 1894 with Winds ranging from 74-95 mph with some dangerous damages which can lead damages to Well-built homes, dedtroying roofs , Uprooting shallow rooted trees, and causing power outages due to destruction of poles

to 157 mph or higher causing Catastrophic damages making the area inhabitable due to loss of life and properties.

For example, Hurricane Dorian in September 2019 attacked Florida’s east coast resulting to a Category 2 storm producing tropical storm force winds,heavy rain and storm surge leading to damages of roof of building and disruption of power poles.

8 0
2 years ago
This sphere is now connected by a long, thin conducting wire to another sphere of radius R2 that is several meters from the firs
alekssr [168]

Here is the full question

A metal sphere with Radius  R₁ has a charge Q₁. Take the electric potential to be zero at an infinite distance from the sphere

a) What are the electric field and electric potential at the surface of the sphere?

This sphere is now connected by a long, thin conducting wire to another sphere of radius R₂ that is several meters from the first sphere. Before the connection is made, this second sphere is uncharged. After electrostatic equilibrium has been reached:

b) what is the total charge on each sphere?

Assume that the amount of charge on the wire is much less than the charge on each sphere.

Answer:

a) The electric field (E) at the surface is the first sphere = \frac{1}{4 \pi \epsilon _0}\frac{Q_1}{R_1^2}

The electric potential (V) at the surface of the first sphere = \frac{1}{4 \pi \epsilon _0}\frac{Q_1}{R_1}

= ER_1

b)

The total charge of the first sphere q_1 = \frac{Q_1R_1}{R_1+R_2}

The total charge of the second sphere q_2= \frac{Q_1R_2}{R_1+R_2}

Explanation:

Given that;

the radius of the sphere = R

The radius of the first sphere = R_1

The radius of the second sphere = R_2

Charge on the first sphere = Q_1

a) The electric field (E) at the surface is the first sphere = \frac{1}{4 \pi \epsilon _0}\frac{Q_1}{R_1^2}

The electric potential (V) at the surface of the first sphere = \frac{1}{4 \pi \epsilon _0}\frac{Q_1}{R_1}

= ER_1

b) From the question. before the part b question; we learnt that the first sphere is now connected to another sphere;

Now that the two sphere are joined . Charges flows from one to another until their potentials are equal.

As Such; We use q_1 \ and \ q_2 to represent their charges respectively

The potential on the surface of the first sphere;

V_1 = \frac{1}{4 \pi \epsilon _0}\frac{q_1}{R_1}

The potential on the surface of the second sphere;

V_2 = \frac{1}{4 \pi \epsilon _0}\frac{q_2}{R_2}

V_1=V_2

∴

\frac{1}{4 \pi \epsilon _0}\frac{q_1}{R_1}= \frac{1}{4 \pi \epsilon _0}\frac{q_2}{R_2}

Thus, we can say :

\frac{q_1}{q_2}= \frac{R_1}{R_2}

and Q_1 = q_1 + q_2

As such ;

The total charge of the first sphere q_1 = \frac{Q_1R_1}{R_1+R_2}

The total charge of the second sphere q_2= \frac{Q_1R_2}{R_1+R_2}

3 0
2 years ago
What is the minimum work needed to push a 950-kg car 710 m up along a 9.0° incline? ignore friction?
kakasveta [241]
<span>1.0344645 MJ The minimum energy need is the potential energy of the car at the top of the ramp and is given by mass*gravity*height mass is known, gravity is assumed to be 9.81m/s^2 as it is on earth, and height must be calculated using trigonometry. height=sin(9 degrees)*710m=111meters so potential energy = 950kg*111m*9.81m/s^2=1.0344645 MJ Using the law of the conservation of energy we can assume that the energy expended to push the car up the incline was at least the potential energy gained by moving 111m against the pull of gravity.</span>
7 0
2 years ago
Read 2 more answers
A piece of copper of mass 100 g is being drilled through with a 1/2" electric drill. The drill operates at 40.0 W and takes 30.0
lesantik [10]

Answer:

correct option is c. 31.0°C  

Explanation:

given data

copper of mass = 100 g

electric drill = 1/2"

power = 40.0 W

time = 30 s

C copper = 387 J/kgC

to find out

copper's increase in temperature

solution

we get here energy that is express a s

energy = 40 W × 30 s

energy = 1200 Watt seconds

and heat acquired by drill is here as

heat acquired = 100 × T × 387  

here temperature rise in copper mass as

temperature rise in copper mass = \frac{100}{1000} × T × 387

temperature rise in copper mass = 38.7 ×  T Watt second

we know that all the energy from the drill heats the copper

so we can say

38.7 ×  T = 1200

T = 31°C  

so correct option is c. 31.0°C  

4 0
2 years ago
Other questions:
  • Four wrestlers step on a scale for a tournament. Wrestler A weighs in at 170 pounds; wrestler B weighs in at 168 pounds; wrestle
    14·2 answers
  • Sam is conducting an experiment in a closed room. He places two sound-generating instruments, A and B, in different places in th
    5·1 answer
  • Which statement would be a valid argument in favor of using nuclear power? There are few negative impacts from mining the fuel.
    9·2 answers
  • The pupil of an eagle’s eye has a diameter of 6.0 mm. Two field mice are separated by 0.010 m. From a distance of 204 m, the eag
    5·1 answer
  • An overnight rainstorm has caused a major roadblock. Three massive rocks of mass m1=584 kg, m2=838 kg, and m3=322 kg have blocke
    9·1 answer
  • The angle between the axes of two polarizing filters is 45.0^\circ45.0 ​∘ ​​ . By how much does the second filter reduce the int
    10·1 answer
  • The absolute pressure, in kilopascals, a depth 10m below sea level is most nearly?
    12·1 answer
  • A mass is tied to a string and swung in a horizontal circle with a constant angular speed. show answer No Attempt If this speed
    11·1 answer
  • Car A rounds a curve of 150‐m radius at a constant speed of 54 km/h. At the instant represented, car B is moving at 81 km/h but
    11·2 answers
  • Observe: Up until now, all the problems you have solved have involved converting only one unit. However, some conversion problem
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!