Answer:
false.
Explanation:
Ok, we define average velocity as the sum of the initial and final velocity divided by two.
Remember that the velocity is a vector, so it has a direction.
Then when she goes from the 1st end to the other, the velocity is positive
When she goes back, the velocity is negative
if both cases the magnitude of the velocity, the speed, is the same, then the average velocity is:
AV = (V + (-V))/2 = 0
While the average speed is the quotient between the total distance traveled (twice the length of the pool) and the time it took to travel it.
So we already can see that the average velocity will not be equal to half of the average speed.
The statement is false
(a) 3.56 m/s
(b) 11 - 3.72a
(c) t = 5.9 s
(d) -11 m/s
For most of these problems, you're being asked the velocity of the rock as a function of t, while you've been given the position as a function of t. So first calculate the first derivative of the position function using the power rule.
y = 11t - 1.86t^2
y' = 11 - 3.72t
Now that you have the first derivative, it will give you the velocity as a function of t.
(a) Velocity after 2 seconds.
y' = 11 - 3.72t
y' = 11 - 3.72*2 = 11 - 7.44 = 3.56
So the velocity is 3.56 m/s
(b) Velocity after a seconds.
y' = 11 - 3.72t
y' = 11 - 3.72a
So the answer is 11 - 3.72a
(c) Use the quadratic formula to find the zeros for the position function y = 11t-1.86t^2. Roots are t = 0 and t = 5.913978495. The t = 0 is for the moment the rock was thrown, so the answer is t = 5.9 seconds.
(d) Plug in the value of t calculated for (c) into the velocity function, so:
y' = 11 - 3.72a
y' = 11 - 3.72*5.913978495
y' = 11 - 22
y' = -11
So the velocity is -11 m/s which makes sense since the total energy of the rock will remain constant, so it's coming down at the same speed as it was going up.
Answer:
The airplane should release the parcel
m before reaching the island
Explanation:
The height of the plane is
, and its speed is v=150 m/s
When an object moves horizontally in free air (no friction), the equation for the y measured with respect to ground is
[1]
And the distance X is
x = V.t [2]
Being t the time elapsed since the release of the parcel
If we isolate t from the equation [1] and replace it in equation [2] we get

Using the given values:

x =
m