answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
OverLord2011 [107]
1 year ago
15

Study the diagram and calculate the effort required to balance the load​

Physics
1 answer:
Lisa [10]1 year ago
6 0

Answer:

Solution given;

load =600N

effort=?

load distance: 0.6m

effort distance;2.6m

we have

load *load distance :effort *effort distance

0.6*600=effort *2.6

360/2.6=effort

effort:138.46N

<u>R</u><u>e</u><u>q</u><u>u</u><u>i</u><u>r</u><u>e</u><u>d</u><u> </u><u>e</u><u>f</u><u>f</u><u>o</u><u>r</u><u>t</u><u> </u><u>i</u><u>s</u><u> </u><u>1</u><u>3</u><u>8</u><u>.</u><u>5</u><u>N</u><u>.</u>

You might be interested in
A quantity y is to be determined from the equation y=(px)/q^2
ki77a [65]

Answer:

heya answer option b

Explanation:

please mark me brainliest

4 0
1 year ago
A resistor R1 is wired to a battery, then resistor R2 is added in series. Are (a) the potential difference across R1 and (b) the
tia_tia [17]

Answer:

Explanation:

a ) Earlier emf of cell applied on R₁ but now emf will be distributed among R₁ and R₂

Potential difference on R₁ will become less .

b ) Current is inversely proportional to resistance of the circuit. As resistance increases , current will be less . So current through R₁ will become less.

c )

When resistance is added in series , they are added up to obtain equivalent resistance . So equivalent resistance R₁₂ will be more than R₁ OR R₂.

6 0
2 years ago
A car drives toward the right over the top of a hill, as shown below. An illustration of car at the top of a hill pointing right
Sav [38]

Answer: X

Explanation:

This situation can be illustrated as a car in circular motion (image attached).

In circular motion the acceleration vector \vec{a} is always directed toward the center of the circumference (that's why it's called centripetal acceleration).

So, in this case the arrow labeled X is the only that points toward the center, hence it represents the car's centripetal acceleration

6 0
2 years ago
Read 2 more answers
Rotational dynamics about a fixed axis: A person pushes on a small doorknob with a force of 5.00 N perpendicular to the surface
FrozenT [24]

Answer:

I = 2 kgm^2

Explanation:

In order to calculate the moment of inertia of the door, about the hinges, you use the following formula:

\tau=I\alpha     (1)

I: moment of inertia of the door

α: angular acceleration of the door = 2.00 rad/s^2

τ: torque exerted on the door

You can calculate the torque by using the information about the Force exerted on the door, and the distance to the hinges. You use the following formula:

\tau=Fd        (2)

F: force = 5.00 N

d: distance to the hinges = 0.800 m

You replace the equation (2) into the equation (1), and you solve for α:

Fd=I\alpha\\\\I=\frac{Fd}{\alpha}

Finally, you replace the values of all parameters in the previous equation for I:

I=\frac{(5.00N)(0.800m)}{2.00rad/s^2}=2kgm^2

The moment of inertia of the door around the hinges is 2 kgm^2

3 0
2 years ago
A damped harmonic oscillator consists of a block of mass 2.5 kg attached to a spring with spring constant 10 N/m to which is app
Cerrena [4.2K]

Answer:

0.5% per oscillation

Explanation:

The term 'damped oscillation' means an oscillation that fades away with time. For Example; a swinging pendulum.

Kinetic energy, KE= 1/2×mv^2-------------------------------------------------------------------------------------------------------------(1).

Where m= Mass, v= velocity.

Also, Elastic potential energy,PE=1/2×kX^2----------------------------------------------------------------------------------------------------------------------(2).

Where k= force constant, X= displacement.

Mechanical energy= potential energy (when a damped oscillator reaches maximum displacement).

Therefore, we use equation (3) to get the resonance frequency,

W^2= k/m--------------------------------------------------------------------------------------(3)

Slotting values into equation (3).

= 10/2.5.

= ✓4.

= 2 s^-1.

Recall that, F= -kX

F^2= (-0.1)^2

Potential energy,PE= 1/2 ×0.01

Potential energy= 0.05 ×100

= 0.5% per oscillation.

6 0
2 years ago
Other questions:
  • A cave explorer travels 3.0 m eastward, then 2.5 m northward, and finally 15.0 m westward. use the graphical method to find the
    8·2 answers
  • A constant torque of 200Nm turns a wheel about its centre. The moment of inertia of it about the axis is 100kgm^s . Find the kin
    13·2 answers
  • An electron is pushed into an electric field where it acquires a 1-v electrical potential. suppose instead that two electrons ar
    5·2 answers
  • Potential energy matter has a result of its ____ or ____.
    5·2 answers
  • A physics student stands on the rim of the canyon and drops a rock. The student measures the time for it to reach the bottom to
    6·1 answer
  • The strength of the gravitational field of a source mass can be measured by the magnitude of the acceleration due to gravity at
    14·1 answer
  • Select the statement that correctly completes the description of phase difference.
    10·1 answer
  • Albert skis down a hill at an angle of 19. He has a mass of 101 kg. What is the normal force of Albert?
    15·1 answer
  • An impala is an African antelope capable of a remarkable vertical leaf. In one recorded leap, a 45 kg impala went into a deep cr
    12·1 answer
  • A proton is released such that it has an initial speed of 4.0 · 105 m/s from left to right across the page. A magnetic field of
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!