Answer:
there will be a heat flow from water to the metal ball...
Answer:
a) Impulse |J|= 219.4 kgm/s
b) Force F = 2672 N
Explanation:
Given
Height of fall h = 0.50 m
Mass M = 70 kg
Period of collision t = 0.082 s
Solution
The final velocity of the person v is zero since the person will come to rest.
The initial velocity of the person can be calculated by using the "law of conservation of energy".
Initial Kinetic energy = Final potential energy

a) Impulse
J = final momentum - initial momentum

Magnitude of impulse

b) Force

Answer:
Explanation:
This is a displacement vector since it is defined in terms of distance (meters, to be exact). The way you find the y-component is
which says that you multiply the magnitude of the vector (its length) by the sin of the direction (the angle):
and get
12.1 m
In a series circuit . . .
-- The total resistance is the sum of the individual resistors.
-- The current is the same at every point in the circuit.
The total resistance in this circuit is (3Ω + 6Ω ) = 9Ω
The current at every point is (V/R) = (12v / 9Ω ) = <em>1.33 A</em> .
Pick choice<em> (a)</em>.