answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vlada [557]
2 years ago
9

In the produce section of a supermarket, five pears are placed on a spring scale. The placement of the pears stretches the sprin

g and causes the dial to move from zero to a reading of 2.0 kg. If the spring constant is 450 N/m, what is the displacement of the spring due to the weight of the pears
Physics
1 answer:
tankabanditka [31]2 years ago
8 0

Answer:

The displacement of the spring due to weight is 0.043 m

Explanation:

Given :

Mass m = 2 Kg

Spring constant k = 450 \frac{N}{m}

According to the hooke's law,

  F = -kx

Where F = force, x = displacement

Here,

F = mg         ( g = 9.8 \frac{m}{s^{2} } )

F = 2 \times 9.8 = 19.6 N

Now for finding displacement,

  x = \frac{F}{k}

Here minus sign only represent the direction so we take magnitude of it.

  x = \frac{19.6}{450}

  x = 0.043 m

Therefore, the displacement of the spring due to weight is 0.043 m

You might be interested in
Two chargedparticles, with charges q1=q and q2=4q, are located at a distance d= 2.00cm apart on the x axis. A third charged part
erica [24]

Answer:

Two possible points

<em>x= 0.67 cm to the right of q1</em>

<em>x= 2 cm to the left of q1</em>

Explanation:

<u>Electrostatic Forces</u>

If two point charges q1 and q2 are at a distance d, there is an electrostatic force between them with magnitude

\displaystyle f=k\frac{q_1\ q_2}{d^2}

We need to place a charge q3 someplace between q1 and q2 so the net force on it is zero, thus the force from 1 to 3 (F13) equals to the force from 2 to 3 (F23). The charge q3 is assumed to be placed at a distance x to the right of q1, and (2 cm - x) to the left of q2. Let's compute both forces recalling that q1=1, q2=4q and q3=q.

\displaystyle F_{13}=k\frac{q_1\ q_3}{d_{13}^2}

\displaystyle F_{13}=k\frac{(q)\ (q)}{x^2}

\displaystyle F_{23}=k\frac{q_2\ q_3}{d_{23}^2}

\displaystyle F_{23}=k\frac{(q)(4q)}{(0.02-x)^2}

\displaystyle F_{23}=\frac{4k\ q^2}{(0.02-x)^2}

Equating

\displaystyle F_{13}=F_{23}

\displaystyle \frac{K\ q^2}{x^2}=\frac{4K\ q^2}{(0.02-x)^2}

Operating and simplifying

\displaystyle (0.02-x)^2=4x^2

To solve for x, we must take square roots in boths sides of the equation. It's very important to recall the square root has two possible signs, because it will lead us to 2 possible answer to the problem.

\displaystyle 0.02-x=\pm 2x

Assuming the positive sign :

\displaystyle 0.02-x= 2x

\displaystyle 3x=0.02

\displaystyle x=0.00667\ m

x=0.67\ cm

Since x is positive, the charge q3 has zero net force between charges q1 and q2. Now, we set the square root as negative

\displaystyle 0.02-x=-2x

\displaystyle x=-0.02\ m

\displaystyle x=-2\ cm

The negative sign of x means q3 is located to the left of q1 (assumed in the origin).

5 0
2 years ago
An arrow is shot vertically upward at a rate of 250ft/s. Use the projectile formula h=−16t2+v0t to determine at what time(s), in
SIZIF [17.4K]

Answer:

The arrow is at a height of 500 feet at time t = 2.35 seconds.

Explanation:

It is given that,

An arrow is shot vertically upward at a rate of 250 ft/s, v₀ = 250 ft/s

The projectile formula is given by :

h=-16t^2+v_ot

We need to find the time(s), in seconds, the arrow is at a height of 500 ft. So,

-16t^2+250t=500

On solving the above quadratic equation, we get the value of t as, t = 2.35 seconds

So, the arrow is at a height of 500 feet at time t = 2.35 seconds. Hence, this is the required solution.

6 0
2 years ago
Read 2 more answers
When a gas is rapidly compressed (say, by pushing down a piston) its temperature increases. When a gas expands against a piston,
shusha [124]

Answer:

Explained in explanation

Explanation:

The first law of thermodynamics states that the change in internal energy of a system(ΔU) is equal to the sum of the net heat transfer into the system(Q) and the net work done on the system(W). In equation, this law is;

ΔU = Q + W

Now, when there's gas inside a container with a movable piston that's tightly fitting, we will assume that the piston can move up and down thereby compressing the gas or allowing the gas to expand against it.

Now these gas molecules inside the container possess kinetic energy. Thus, the internal energy(U) of the system is simply the sum of all the kinetic energies of the individual gas molecules present in the container.

Therefore, if the temperature(T) of the gas increases, then the speed and internal energy(U) of the gas molecules will also increase. In the same way, if the temperature of the gas decreases, the speed and internal energy of the gas molecules would also decrease.

Now, back to the question, when the piston is pushed down, it does work on the gas and the gas does negative work on the piston. Thus, the gas will be get compressed to a smaller space, and thereby making the gas molecules to hit the piston at a faster rate. Thus, there is a decrease in speed and as we saw earlier that when there is a decrease in speed, it means temperature has decreased.

Whereas, when the piston is moved up, the gas does positive work on the piston and the speed of the gas molecules will increase. Like I said earlier that increase in speed means increase in temperature.

4 0
2 years ago
. Emergency rations are to be dropped from a plane to some stranded hikers. The search and rescue plane is flying at an altitude
almond37 [142]

Answer:

35 m/s down

Explanation:

The horizontal speed of the package is 70 m/s.  So the time needed to reach the hikers is:

1000 m / (70 m/s) = 14.28 s

Taking down to be positive, the initial velocity needed is:

Δy = v₀ t + ½ at²

1500 m = v₀ (14.28 s) + ½ (9.8 m/s²) (14.28 s)²

v₀ = 35 m/s

The package must be launched down with an initial velocity of 35 m/s.

3 0
2 years ago
Read 2 more answers
One species of eucalyptus tree, Eucalyptus regnans, grow to heights similar to those attained by California redwoods. Suppose a
mote1985 [20]

Answer:

The tree is 143.325 meters tall

Explanation:

The given parameters of the eucalyptus tree are;

The mass of the eucalyptus tree nut = 1.7 ounces

The speed of the nut at 50.3 m above the ground, v = 42.7 m/s

The equation for free fall is given as follows;

v² = 2·g·h

Where;

v = The velocity after falling through a height, h

g = The acceleration due to gravity = 9.8 m/s²

h = The height through which the seed has already fallen

Therefore, we have;

h = v²/(2·g) = (42.7 m/s)²/(2 × 9.8 m/s²) = 93.025 m

The height through which the seed has already fallen, h = 93.025 m

The height of the tree = h + The height of the seed above ground at the moment it was falling at 42.7 m/s

The height of the tree = 93.025 m + 50.3 m = 143.325 m

The height of the tree = 143.325 m.

4 0
2 years ago
Other questions:
  • Find the centripetal force needed by a 1275 kg car to make a turn of radius 40.0 m at a speed of 25.0 km/h
    12·2 answers
  • In a given city, the permissible limit of CO (carbon monoxide) in the air is 100 parts per million (ppm). The city monitors the
    8·2 answers
  • A star is located at a distance of about 100 million light years from Earth. An astronomer plans to measure the distance of the
    11·1 answer
  • We know that the earth's axis is tilted 23 ½ degrees. On or about June 21 or 22 each year, the summer solstice occurs for those
    6·2 answers
  • If the net force acting on an object increases by 50 percent, then the acceleration of the object will
    11·1 answer
  • An apple falls from an apple tree growing on a 20° slope. The apple hits the ground with an impact velocity of 16.2 m/s straight
    12·1 answer
  • If a rock is thrown upward on the planet Mars with a velocity of 18 m/s, its height (in meters) after t seconds is given by H =
    5·1 answer
  • You toss a rock of mass m vertically upward. Air resistance can be neglected. The rock reaches a maximum height h above your han
    12·2 answers
  • Dźwig podniósł kontener o masie m = 80 kg na wysokość h = 10 m. Pierwsze 5 m kontener przebył z przy-
    10·1 answer
  • What is the advantage of the SI unit over CGS units?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!