Answer:
Show attached picture
Explanation:
Let's call V the voltage provided by the battery in the circuit. M is the multimeter (let's call
its internal resistance) and R indicates the resistance of the light bulb.
We know that the meter's internal resistance is 1000 times higher than the bulb's resistance:
(1)
Both the meter and the bulb are connected in parallel to the battery, so they both have same potential difference at their terminals:

Using Ohm's law,
, we can rewrite the previous equation as:

where
is the current in the meter
is the current in the bulb
Using (1), this equation becomes

so, the current in the meter is 1000 times less than through the bulb.
The mass of the puck is
m = 0.15 kg.
The diameter of the puck is 0.076 m, therefore its radius is
r = 0.076/2 = 0.038 m
The sliding speed is
v = 0.5 m/s
The angular velocity is
ω = 8.4 rad/s
The rotational moment of inertia of the puck is
I = (mr²)/2
= 0.5*(0.15 kg)*(0.038 m)²
= 1.083 x 10⁻⁴ kg-m²
The kinetic energy of the puck is the sum of the translational and rotational kinetic energy.
The translational KE is
KE₁ = (1/2)*m*v²
= 0.5*(0.15 kg)*(0.5 m/s)²
= 0.0187 j
The rotational KE is
KE₂ = (1/2)*I*ω²
= 0.5*(1.083 x 10⁻⁴ kg-m²)*(8.4 rad/s)²
= 0.0038 J
The total KE is
KE = 0.0187 + 0.0038 = 0.0226 J
Answer: 0.0226 J
Answer:
the thickness required of a masonry wall L = 375mm
Explanation:
The detailed steps and appropriate use of fourier's law of heat conduction is as shown in the attached file.
Answer:
yes independent of the sign or valve of Q
Explanation:
Answer:
h = 2 R (1 +μ)
Explanation:
This exercise must be solved in parts, first let us know how fast you must reach the curl to stay in the
let's use the mechanical energy conservation agreement
starting point. Lower, just at the curl
Em₀ = K = ½ m v₁²
final point. Highest point of the curl
= U = m g y
Find the height y = 2R
Em₀ = Em_{f}
½ m v₁² = m g 2R
v₁ = √ 4 gR
Any speed greater than this the body remains in the loop.
In the second part we look for the speed that must have when arriving at the part with friction, we use Newton's second law
X axis
-fr = m a (1)
Y Axis
N - W = 0
N = mg
the friction force has the formula
fr = μ N
fr = μ m g
we substitute 1
- μ mg = m a
a = - μ g
having the acceleration, we can use the kinematic relations
v² = v₀² - 2 a x
v₀² = v² + 2 a x
the length of this zone is x = 2R
let's calculate
v₀ = √ (4 gR + 2 μ g 2R)
v₀ = √4gR( 1 + μ)
this is the speed so you must reach the area with fricticon
finally have the third part we use energy conservation
starting point. Highest on the ramp without rubbing
Em₀ = U = m g h
final point. Just before reaching the area with rubbing
= K = ½ m v₀²
Em₀ = Em_{f}
mgh = ½ m 4gR(1 + μ)
h = ½ 4R (1+ μ)
h = 2 R (1 +μ)