Answer:
F = 19.375 x 10^-6 N
Explanation:
This problem can be solved by applying Coulomb's Law, which lets us determine the force between two electrically charged particles.
It is defined as
F = (ke * q1 * q2)/ r^2
Where,
ke = is Coulomb's constant ≈ 9×10^9 N⋅m^2⋅C^−2
q1 = 5.0 x 10^-8 C
q2 = 1.0 x 10^-7 C
r = 5 ft = 1,524 m
F = (9×10^9 N⋅m^2⋅C^−2)*(5.0 x 10^-8 C)*(1.0 x 10^-7 C)/ ((1,524 m)^2)
F = (9×10^9 N⋅m^2⋅C^−2)*(5.0 x 10^-8 C)*(1.0 x 10^-7 C)/ ((1,524 m)^2)
F = 19.375 x 10^-6 N
Answer:
the answer to this question is
<em>The</em><em> </em><em>Same</em><em> </em>
<em>newton's</em><em> </em><em>law</em><em> </em><em>#3</em>
Explanation:
<em>Hope</em><em> </em><em>this</em><em> </em><em>helps</em><em> </em>
Answer:
285 seconds
Explanation:
Jenny speed is 3.8 m/s
Alyssa speed in 4.0 m/s
Alyssa starts after 15 seconds
Find the distance covered by Jenny, when Alyssa starts
Distance=Speed*time
Distance covered by Jenny in 15 seconds= 3.8×15=57m
Relative speed of the two members heading same direction will be;
4.0m/s-3.8m/s=0.2m/s
To find the time Alyssa catch up with Jenny you divide the distance to be covered by Alyssa by the relative speed of the two
Distance=57m, relative speed=0.2m/s t=57/0.2 =285 seconds
=4.75 minutes
Voltage = (current) x (resistance)
The voltage across THIS RESISTOR is
V = (0.050 A) x (0.1 ohm)
V = 0.005 v (5 millivolts)
Answer:
option (c)
Explanation:
mass of iron = 0.10 kg
mass of copper = 0.16 kg
rise in temperature, ΔT = 35°C
specific heat of iron = 450 J/kg°C
specific heat of copper = 390 J/kg°C
Heat by iron (H1) = mass of iron x specific heat of iron x ΔT
H1 = 0.10 x 450 x 35 = 1575 J
Heat by copper (H2) = mass of copper x specific heat of copper x ΔT
H1 = 0.16 x 390 x 35 = 2184 J
Total heat H = H1 + H2
H = 1575 + 2184 = 3759 J
by rounding off
H = 4000 J