Answer:
Finally current will be
i = 0.35 A
Explanation:
As we know that power of the bulb is given by the formula

now we have

R = 240 ohm
so we have


now the current in the bulb is given as


now when length of the filament is double
so the resistance of the wire also gets double
so we have



now the current in the bulb is given as



Answer:
r= 2.17 m
Explanation:
Conceptual Analysis:
The electric field at a distance r from a charge line of infinite length and constant charge per unit length is calculated as follows:
E= 2k*(λ/r) Formula (1)
Where:
E: electric field .( N/C)
k: Coulomb electric constant. (N*m²/C²)
λ: linear charge density. (C/m)
r : distance from the charge line to the surface where E calculates (m)
Known data
E= 2.9 N/C
λ = 3.5*10⁻¹⁰ C/m
k= 8.99 *10⁹ N*m²/C²
Problem development
We replace data in the formula (1):
E= 2*k*(λ/r)
2.9= 2*8.99 *10⁹*(3.5*10⁻¹⁰/r)
r =( 2*8.99 *10⁹*3.5*10⁻¹⁰) / (2.9)
r= 2.17 m
<span>The answer is transformer. They utilize
electromagnetic induction to generate current. This is only possible in
alternating current due to the differential increase and decrease of electrical
current that induces changes in magnetic flux in the coil. This varies the
magnetic flux of the primary coil that generates current in the secondary coil.</span>
Answer:
<em>a) Fvt cosθ</em>
<em>b) Fv cosθ</em>
<em></em>
Explanation:
Each horse exerts a force = F
the rope is inclined at an angle = θ
speed of each horse = v
a) In time t, the distance traveled d = speed x time
i.e d = v x t = vt
also, the resultant force = F cosθ
Work done W = force x distance
W = F cosθ x vt = <em>Fvt cosθ</em>
<em></em>
b) Power provided by the horse P = force x speed
P = F cosθ x v
P = <em>Fv cosθ</em>