Answer:
Incomplete question
This is the complete question
For a magnetic field strength of 2 T, estimate the magnitude of the maximum force on a 1-mm-long segment of a single cylindrical nerve that has a diameter of 1.5 mm. Assume that the entire nerve carries a current due to an applied voltage of 100 mV (that of a typical action potential). The resistivity of the nerve is 0.6ohms meter
Explanation:
Given the magnetic field
B=2T
Lenght of rod is 1mm
L=1/1000=0.001m
Diameter of rod=1.5mm
d=1.5/1000=0.0015m
Radius is given as
r=d/2=0.0015/2
r=0.00075m
Area of the circle is πr²
A=π×0.00075²
A=1.77×10^-6m²
Given that the voltage applied is 100mV
V=0.1V
Given that resistive is 0.6 Ωm
We can calculate the resistance of the cylinder by using
R= ρl/A
R=0.6×0.001/1.77×10^-6
R=339.4Ω
Then the current can be calculated, using ohms law
V=iR
i=V/R
i=0.1/339.4
i=2.95×10^-4 A
i=29.5 mA
The force in a magnetic field of a wire is given as
B=μoI/2πR
Where
μo is a constant and its value is
μo=4π×10^-7 Tm/A
Then,
B=4π×10^-7×2.95×10^-4/(2π×0.00075)
B=8.43×10^-8 T
Then, the force is given as
F=iLB
Since B=2T
F=iL(2B)
F=2.95×10^-4×2×8.34×10^-8
F=4.97×10^-11N
Answer:
Q = ba⁴ * ε₀
Explanation:
From Gauss's Law, we know that
flux Φ = Q / ε₀
where ε₀ = 8.85e-12 C²/N·m²
and also,
Φ = EAcosθ
The field is directed along the x-axis, so that all of the flux passes through the side of the cube at x = a. This means that θ = 0º, and thus
Φ = EAcos0
Φ = EA
E = bx² meanwhile, we are interested in the point where x = a, so we substitute and then
E = ba²
Since A = a² for the cube face, we have
Q / ε₀ = E * A
Q / ε₀ = ba² * a²
so that
Q = ba⁴ * ε₀
<span>The Adirondack Mountains, Taconic Mountains, and the Hudson Highlands have the most resistant bedrock.</span>
Answer:
145.8 cm³ of paint
Explanation:
d₁ = Smaller diameter paintball = 5 cm
d₂ = Larger diameter paintball = 9 cm
V₂ = Volume of larger diameter paintball
Volume of smaller diameter paintball

Similarly

Dividing the above two equations, we get

∴ The larger one hold 163.296 cm³ of paint
Answer:

Explanation:
As we know that the equation of SHM is given as

here we know that

here we have

now we have


now we have

now at t = 2.3 s we have

