answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PIT_PIT [208]
2 years ago
7

An ambulance driving 35.0 m/s emits a sound wave with a wavelength of 80.0 centimeters. As it drives away from a hospital, which

of the following is the only possible frequency heard by the medical staff who are standing at the entrance? Speed of sound is 343 m/s.
39.7 Hz
43.8 Hz
389 Hz
429 Hz
Physics
1 answer:
katen-ka-za [31]2 years ago
4 0

Apparent frequency heard by the staff: 389 Hz

Explanation:

The phenomenon described in this situation is called Doppler effect.

Doppler effect occurs when there is a source emitting a wave in relative motion with respect an observer. In such situation, the frequency of the wave as perceived by the observer ("apparent frequency") is shifted from the real frequency of the sound ("proper frequency"). In particular:

- The observer perceives a higher frequency if the source is moving towards them

- The observer perceives a lower frequency if the source is moving away from them

The formula to calculate the apparent frequency in the Doppler effect is

f'=\frac{v\pm v_o}{v\pm v_s}f

where

f is the proper frequency

f' is the apparent frequency

v is the speed of the wave

v_o is the velocity of the observer (positive if they are moving towards the source, negative if moving away)

v_s is the velocity of the source (positive if it is moving away, negative if moving towards the observer)

First of all, in this problem we have to calculate the proper frequency of the sound wave emitted from the ambulance; we have:

v = 343 m/s (speed of sound wave)

\lambda=80 cm = 0.80 m (wavelength)

So the proper frequency is

f=\frac{v}{\lambda}=\frac{343}{0.80}=429 Hz

Now we can calculate the apparent frequency heard by the staff at the hospital when the ambulance moves away; we have:

v_s = +35.0 m/s (velocity of the ambulance)

v_o = 0 (velocity of the staff)

Substituting,

f'=\frac{343+0}{343+35}(429)=389 Hz

Learn more about frequency and wavelength:

brainly.com/question/5354733

brainly.com/question/9077368

#LearnwithBrainly

You might be interested in
Capillary waves travel what than long waves
7nadin3 [17]
Faster than. Hope this helps!!!
6 0
2 years ago
Read 2 more answers
A swimmer does 3,560 J of work in 55 s. What is the swimmer’s power output? Round your answer to two significant figures. The po
Natasha2012 [34]
The value of the swimmer's power output is calculated by dividing the work done by the time it took for the work to be completed. From the given in this item,
                              P = 3560 J/ 55 s = 64.73 W
Rounding off to two significant figures will give us 65 W. 
6 0
2 years ago
Read 2 more answers
calculate the work done to stretch an elastic string by 40cm if a force of 10N produces an extension of 4cm in it?
Charra [1.4K]
100N is how much work is needed 
4 0
2 years ago
Two electric force vectors act on a particle. Their x-components are 13.5 N and −7.40 N and their y-components are −12.0 N and −
guapka [62]

Answer:

Explanation:

Given two vectors as follows

E₁ = 13.5 i -12 j

E₂ = -7.4 i - 4.7 j

Resultant E = E₁ + E₂

= 13.5 i -12 j -7.4 i - 4.7 j

E = 6.1 i - 16.7 j

a ) X component of resultant = 6.1 N

b ) y component of resultant = -16.7 N

Magnitude of resultant = √ ( 6.1² + 16.7² )

= 17.75 N

d ) If θ be the required angle

tanθ = 16.7 / 6.1 = 2.73

θ = 70° .

counterclockwise = 360 - 70 = 290°

6 0
2 years ago
Two 8.0 Ω lightbulbs are connected in a 12 V series circuit. What is the power of both glowing bulbs?
V125BC [204]

Answer:

18 W

Explanation:

Applying,

P = V²/R.................. Equation 1

Where P = Power of both glowing bulbs, V = Voltage, R = Combined Resistance of both bulbs

Since: It is a series circuit,

Then,

R = R1+R2............. Equation 2

Where R1= Resistance of the first bulb, R2 = Resistance of the second bulb

Given: R1 = R2 = 8 Ω

Substitute into equation 1

R = 8+8

R = 16 Ω

Also Given: V = 12 V

Substitute into equation 1

P = 12²/8

P = 144/8

P = 18 W

7 0
2 years ago
Other questions:
  • A device that uses electricity and magnetism to create motion is called a _________motor,magnet,generator . In a reverse process
    6·2 answers
  • When two resistors are wired in series with a 12 V battery, the current through the battery is 0.33 A. When they are wired in pa
    5·1 answer
  • The cheetah is considered the fastest running animal in the world. Cheetahs can accelerate to a speed of 21.7 m/s in 2.50 s and
    13·1 answer
  • In the future, people will only enjoy one sport: Electrodes. In this sport, you gain points when you cause metallic discs hoveri
    15·1 answer
  • A ball of mass 5.0kg is lifted off the floor a distance of 1.7m. 1. What is the change in the gravitational potential energy of
    13·1 answer
  • The blood plays an important role in removing heat from th ebody by bringing the heat directly to the surface where it can radia
    13·1 answer
  • Sheila (m=56.8 kg) is in her saucer sled moving at 12.6 m/s at the bottom of the sledding hill near Bluebird Lake. She approache
    11·1 answer
  • Suppose the rocket is coming in for a vertical landing at the surface of the earth. The captain adjusts the engine thrust so tha
    5·1 answer
  • Chose the word that correctly completes the following sentence: Kirchoff's junction law expresses the conservation of ____. a) m
    15·1 answer
  • A dog is 60m away while moving at constant velocity of 10m/s towards you. Where is the dog after 4 seconds?
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!