answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PIT_PIT [208]
2 years ago
7

An ambulance driving 35.0 m/s emits a sound wave with a wavelength of 80.0 centimeters. As it drives away from a hospital, which

of the following is the only possible frequency heard by the medical staff who are standing at the entrance? Speed of sound is 343 m/s.
39.7 Hz
43.8 Hz
389 Hz
429 Hz
Physics
1 answer:
katen-ka-za [31]2 years ago
4 0

Apparent frequency heard by the staff: 389 Hz

Explanation:

The phenomenon described in this situation is called Doppler effect.

Doppler effect occurs when there is a source emitting a wave in relative motion with respect an observer. In such situation, the frequency of the wave as perceived by the observer ("apparent frequency") is shifted from the real frequency of the sound ("proper frequency"). In particular:

- The observer perceives a higher frequency if the source is moving towards them

- The observer perceives a lower frequency if the source is moving away from them

The formula to calculate the apparent frequency in the Doppler effect is

f'=\frac{v\pm v_o}{v\pm v_s}f

where

f is the proper frequency

f' is the apparent frequency

v is the speed of the wave

v_o is the velocity of the observer (positive if they are moving towards the source, negative if moving away)

v_s is the velocity of the source (positive if it is moving away, negative if moving towards the observer)

First of all, in this problem we have to calculate the proper frequency of the sound wave emitted from the ambulance; we have:

v = 343 m/s (speed of sound wave)

\lambda=80 cm = 0.80 m (wavelength)

So the proper frequency is

f=\frac{v}{\lambda}=\frac{343}{0.80}=429 Hz

Now we can calculate the apparent frequency heard by the staff at the hospital when the ambulance moves away; we have:

v_s = +35.0 m/s (velocity of the ambulance)

v_o = 0 (velocity of the staff)

Substituting,

f'=\frac{343+0}{343+35}(429)=389 Hz

Learn more about frequency and wavelength:

brainly.com/question/5354733

brainly.com/question/9077368

#LearnwithBrainly

You might be interested in
A What CE describes the way energy is stored in a sandwich​
SVETLANKA909090 [29]
What is Potential Energy? You probably already know that without eating, your body becomes weak from lack of energy. Take a few bites of a turkey sandwich, and moments later, you feel much better. That's because food molecules contain potential energy, or stored energy, that can do work in the future. Hope it helps
8 0
2 years ago
) a charge of 6.15 mc is placed at each corner of a square 0.100 m on a side. determine the magnitude and direction of the force
Nana76 [90]
Because charges are positioned on a square the force acting on one charge is the same as the force acting on all others. 
We will use superposition principle. This means that force acting on the charge is the sum of individual forces. I have attached the sketch that you should take a look at.
We will break down forces on their x and y components:
F_x=F_3+F_2cos(45^{\circ})
F_y=F_1+F_2sin(45^{\circ})
Let's figure out each component:
F_1=\frac{1}{4\pi \epsilon}\frac{q^2}{a^2}\\
F_3=\frac{1}{4\pi \epsilon}\frac{q^2}{a^2}\\
F_2=\frac{1}{4\pi \epsilon}\frac{q^2}{(\sqrt{2}a)^2}
Total force acting on the charge would be:
F=\sqrt{F_x^2+F_y^2}
We need to calculate forces along x and y axis first( I will assume you meant micro coulombs, because otherwise we get forces that are huge).
F_x=F_3+F_2cos(45^{\circ})=\frac{1}{4\pi \epsilon}\frac{q^2}{a^2}+\frac{1} {4\pi \epsilon}\frac{q^2}{(\sqrt{2}a)^2}\cdot\cos(45)=46N
F_y=\frac{1}{4\pi \epsilon}\frac{q^2}{(\sqrt{2}a)^2}\cdot sin(45)+\frac{1}{4\pi \epsilon}\frac{q^2}{a^2}=46N
Now we can find the total force acting on a single charge:
F=\sqrt{F_x^2+F_y^2}=\sqrt{46^2+46^2}=65N
As said before, intensity of the force acting on charges is the same for all of them.

5 0
2 years ago
For each property listed, identify the type of element it describes. Very good electrical conductivity: Amphoteric, able to form
kow [346]

The elements that is very good in electrical conductivity are gold and copper: elements that is amphoteric are copper, zinc, tin, lead, aluminum and beryllium: elements that is gaseous at room temperature are hydrogen, nitrogen, oxygen, fluorine and chlorine: elements that is solid at room temperature are all metal except mercury and perhaps some unseen radioactive elements. Lastly, elements that is brittle are hydrogen, carbon, nitrogen, oxygen, phosphorus, sulfur and selenium

4 0
2 years ago
Read 2 more answers
What is the current through a 25 ohm resistor connected to a 5.0 V power supply? a 0.20 A b 5.0 A c 25 A d 30 A
zysi [14]
~Formula: Voltage= current• resistance
(V= Ir)
~Using this formula, plug in the numbers from the equation into the formula
~5=25i
~Now you have a one-step equation
~Divide by 25 on both sides and you should get your answer:
~I= 0.2 (which means current is 0.2)
8 0
2 years ago
Can you check this? Samantha swam upstream for some distance in one hour. She then swam downstream the same river for the same d
ElenaW [278]
So her speed in still water will be 6mph :)

3 0
2 years ago
Read 2 more answers
Other questions:
  • A cart moves along a track at a velocity of 3.5 cm/s. when a force is applied to the cart, its velocity increases to 8.2 cm/s. i
    15·2 answers
  • A strip 1.2 mm wide is moving at a speed of 25 cm/s through a uniform magnetic field of 5.6 t. what is the maximum hall voltage
    11·1 answer
  • A ramp 20 m long and 4 m high is used to lift a heavy box. A pulley system with 4 rope sections supporting the load is used to l
    7·1 answer
  • Within an integrated circuit, each wafer is cut into sections, which
    6·2 answers
  • A cubical box, 5.00 cm on each side, is immersed in a fluid. The gauge pressure at the top surface of the box is 594 Pa and the
    13·1 answer
  • When you apply the torque equation ∑τ = 0 to an object in equilibrium, the axis about which torques are calculated:
    9·1 answer
  • If a freely suspended vertical spring is pulled in downward direction and then released, which type of wave is produced in the s
    9·2 answers
  • The blue curve is the plot of the data. The straight orange line is tangent to the blue curve at t = 40 s. A plot has the concen
    8·2 answers
  • A technician is troubleshooting a problem. The technician tests the theory and determines the theory is confirmed. Which of the
    11·1 answer
  • Determine a formula for the maximum height h that a rocket will reach if launched vertically from the Earth's surface with speed
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!