The light bulb, it takes electrical energy and turns it into l<span>ight energy!</span>
Answer:

Explanation:
As we know that the equation of SHM is given as

here we know that

here we have

now we have


now we have

now at t = 2.3 s we have


Velocity = frequency * wavelength
v = fλ, Just pick any points on the graph for frequency f and corresponding λ. Taking the first red point at the top. λ = 6m, f = 1 Hz, v = 6 * 1, v = 6 m/s
V = 6 M/S
Answer:
Explanation:
Impulse = change in momentum
mv - mu , v and u are final and initial velocity during impact at surface
For downward motion of baseball
v² = u² + 2gh₁
= 2 x 9.8 x 2.25
v = 6.64 m / s
It becomes initial velocity during impact .
For body going upwards
v² = u² - 2gh₂
u² = 2 x 9.8 x 1.38
u = 5.2 m / s
This becomes final velocity after impact
change in momentum
m ( final velocity - initial velocity )
.49 ( 5.2 - 6.64 )
= .7056 N.s.
Impulse by floor in upward direction
= .7056 N.s
Answer:
v=8m/s
Explanation:
To solve this problem we have to take into account, that the work done by the friction force, after the collision must equal the kinetic energy of both two cars just after the collision. Hence we have
![W_{f}=E_{k}\\W_{f}=\mu N=\mu(m_1+m_1)g\\E_{k}=\frac{1}{2}[m_1+m_2]v^2](https://tex.z-dn.net/?f=W_%7Bf%7D%3DE_%7Bk%7D%5C%5CW_%7Bf%7D%3D%5Cmu%20N%3D%5Cmu%28m_1%2Bm_1%29g%5C%5CE_%7Bk%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Bm_1%2Bm_2%5Dv%5E2)
where
mu: coefficient of kinetic friction
g: gravitational acceleration
We can calculate the speed of the cars after the collision by using

Now , we can compute the speed of the second car by taking into account the conservation of the momentum

the car did not exceed the speed limit
Hope this helps!!