answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Liula [17]
2 years ago
9

Anna applies a force of 19.5 newtons to push a book placed on a table. If the normal force of the book is 51.7 newtons, what is

the coefficient of kinetic friction?
Physics
1 answer:
GarryVolchara [31]2 years ago
6 0

that would be given by

[email protected]

@ representing coefficient of kinetic friction.

thus 19.5/51.7 = 0.377

You might be interested in
a lady bug walks 10 cm forward then 5 cm backwards in 20 seconds. what is the average speed of the ladybug ?
igor_vitrenko [27]

A lady bug moves 10 cm forward and 5 cm backwards

so total distance moved by lady bug = 10 + 5 = 15 cm

total time taken by the lady bug

t =  20 s

so the average speed is given as

v = \frac{d}{t}

v = \frac{15}{20}

v = 0.75 cm/s

so its average speed is 0.75 cm/s

5 0
2 years ago
In certain cases, using both the momentum principle and energy principle to analyze a system is useful, as they each can reveal
SpyIntel [72]

Answer:

A) F_g = 26284.48 N

B) v = 7404.18 m/s

C) E = 19.19 × 10^(10) J

Explanation:

We are given;

Mass of satellite; m = 3500 kg

Mass of the earth; M = 6 x 10²⁴ Kg

Earth circular orbit radius; R = 7.3 x 10⁶ m

A) Formula for the gravitational force is;

F_g = GmM/r²

Where G is gravitational constant = 6.67 × 10^(-11) N.m²/kg²

Plugging in the relevant values, we have;

F_g = (6.67 × 10^(-11) × 3500 × 6 x 10²⁴)/(7.3 x 10⁶)²

F_g = 26284.48 N

B) From the momentum principle, we have that the gravitational force is equal to the centripetal force.

Thus;

GmM/r² = mv²/r

Making v th subject, we have;

v = √(GM/r)

Plugging in the relevant values;

v = √(6.67 × 10^(-11) × 6 x 10²⁴)/(7.3 x 10⁶))

v = 7404.18 m/s

C) From the energy principle, the minimum amount of work is given by;

E = (GmM/r) - ½mv²

Plugging in the relevant values;

E = [(6.67 × 10^(-11) × 3500 × 6 × 10²⁴)/(7.3 x 10⁶)] - (½ × 3500 × 7404.18)

E = 19.19 × 10^(10) J

5 0
2 years ago
The boom hoisting sheave must have pitch diameters of no less than _______times the nominal diameter of the rope used.
alexira [117]

Answer:

18 times

Explanation:

According to the security purposes which is set under the rules and regulation OSHA, which describes all the rights to the worker.

In the boom hoist receiving system all the sheaves which are used should have a pitch diameter of rope not less than 18 times the diameter of the nominal rope which is used.

7 0
2 years ago
Planet A has mass 3M and radius R, while Planet B has mass 4M and radius 2R. They are separated by center-to-center distance 8R.
Aleksandr-060686 [28]

Answer:

Explanation:



In Newton's law of universal gravitation

F = Gm₁m₂/r²

Where G is a gravitational constant = 6.674e-11m³/kgs²

m₁ and m₂ are the masses of the two bodies or objects in question, in kilogram (kg)

r is the distance in meters between them

From the question, the rock is placed halfway between the planets

So, it's distance from planet A is 8R/2 = 4R

And it's distance from planet B is also 8R/2 = 4R

Using F = Gm₁m₂/r²

To Planet A

r = 4R,

m₁ = mass of Rock = m

m₂ = mass of planet A = 3M

So Fa = G mm₂/r² = Gm(3M) / (4R)²

To Planet B,

r = 4R,

m₁ = mass of Rock = m

m₂ = mass of planet B = 4M

Fb = G mm₂/r² = Gm(4M) / (4R)²

Comparing both forces together, we realise that Planet B has the largest force,

so take we F = Fb – Fa

F = Fb – Fa = Gm(4M) / (4R)² – Gm(3M) / (4R)²

F = GmM/16R²)(4–3)

F = GmM/16R²

Note that Force = Mass * Acceleration

So, F = ma

So, ma = GmM/16R² ------- Divide through by m

a = GM/16R²

From the question

M = 7.3×10^23kg

R = 5.8×10^6 m

So, a = (6.674 * 10^-11 * 7.3×10^23)/16(5.8×10^6)²

a = (48.7202 * 10^12)/16(33.64 * 10^12)

a = (48.7202 * 10^12)/(538.4 * 10^12)

a = 48.7202/538.4

a = 0.090517612960760

a = 0.091m/s² ----------Approximated

5 0
2 years ago
A small object carrying a charge of -3.00 nc is acted upon by a downward force of 30.0 nn when placed at a certain point in an e
arlik [135]
The working equation for this one is:

E = F/Q, where E is the strength of the electric field, F is the electric force and Q is the charge. Substituting the corresponding values, the strength of the electric field is equal to

E = -30 nN/-3 nC
E = 10 nN/nC


3 0
2 years ago
Other questions:
  • a field hockey ball is launched from the ground at an angle to the horizontal. what are the ball's horizontal and vertical accel
    11·1 answer
  • Scientists plan to release a space probe that will enter the atmosphere of a gaseous planet. The temperature of the gaseous plan
    14·1 answer
  • Find the centripetal force needed by a 1275 kg car to make a turn of radius 40.0 m at a speed of 25.0 km/h
    12·2 answers
  • Where is the steering nozzle located on a pwc?
    14·2 answers
  • You are waiting to turn left into a small parking lot. a car approaching from the opposite direction has a turn signal on. you s
    14·1 answer
  • When Anna eats an apple, the sugars in that apple are broken down into the substance called glucose. Glucose is then burned in h
    7·2 answers
  • A rectangular beam 10 cm wide, is subjected to a maximum shear force of 50000 N, the corresponding maximum shear stress being 3
    13·1 answer
  • A (1.25+A) kg bowling ball is hung on a (2.50+B) m long rope. It is then pulled back until the rope makes an angle of (12.0+C)o
    13·1 answer
  • A box sliding on a horizontal frictionless surface encounters a spring attached to a rigid wall and compresses the spring by a c
    9·1 answer
  • A sinusoidally-varying voltage V(t)=V0sin(2pift) with amplitude V0 = 10 V and frequency f = 100 Hz is impressed across the plate
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!