Answer:
295.42 N
Explanation:
From Newton's law of universal gravitation.
F = Gmm'/r².................. Equation 1
Where F = Gravitational force, G = Universal constant, m = mass of the human, m' = mass of mass, r = radius of mass.
Given: m = 80 kg, m' = 6.4×10²³ kg, r = 3.4×10⁶ m.
Constant: G = 6.67×10⁻¹¹ Nm²/Kg²
Substitute into equation 1
F = 6.67×10⁻¹¹(80)(6.4×10²³ )/( 3.4×10⁶)²
F = 3415.04×10¹²/(11.56×10¹²)
F = 3415.04/11.56
F = 295.42 N
Hence the gravitational force = 295.42 N
Answer:
xcritical = d− m1
/m2
( L
/2−d)
Explanation: the precursor to this question will had been this
the precursor to the question can be found online.
ff the mass of the block is too large and the block is too close to the left end of the bar (near string B) then the horizontal bar may become unstable (i.e., the bar may no longer remain horizontal). What is the smallest possible value of x such that the bar remains stable (call it xcritical)
. from the principle of moments which states that sum of clockwise moments must be equal to the sum of anticlockwise moments. aslo sum of upward forces is equal to sum of downward forces
smallest possible value of x such that the bar remains stable (call it xcritical)
∑τA = 0 = m2g(d− xcritical)− m1g( −d)
xcritical = d− m1
/m2
( L
/2−d)
Moon diameter - 2,160 miles Sun diameter - 864,000 miles
So, in terms of diameter the Sun is 400 times bigger then the Moon. If we divide 150,000,000 km by 384,000 km we get 390.625 almost the same number.
The Sun and the Moon have sizes which vary a small amount as seen from Earth.
The Sun appears largest about January 4th and smallest around July 4th.