Answer:
A) x _electron = 0.66 10² m
, B) x _Eart = 1.13 10² m
, C) d_sphere = 1.37 10⁻² mm
Explanation:
A) Let's use a ball for the nucleus, the electron is at a farther distance the sphere for the electron must be at a distance of
Let's use proportions rule
x_ electron = 0.529 10⁻¹⁰ /1.2 10⁻¹⁵ 1.5
x _electron = 0.66 10⁵ mm = 0.66 10² m
B) the radii of the Earth and the sun are
= 6.37 10⁶ m
tex]R_{Sum}[/tex] = 6.96 10⁸ m
Distance = 1.5 10¹¹ m
x_Earth = 1.5 10¹¹ / 6.96 10⁸ 1.5
x _Eart = 1.13 10² m
C) The radius of a sphere that represents the earth, if the sphere that represents the sun is 1.5 mm, let's use another rule of proportions
d_sphere = 1.5 / 6.96 10⁸ 6.37 10⁶
d_sphere = 1.37 10⁻² mm
You knew that this question is ridiculously easy. So, just to
make it harder, you decided not to let us see the picture, so
that we could not "examine the circuit".
The description is talking about a parallel circuit. The other
kind is a series circuit, and that one has no forks in the road.
This involves shooting electrons (from an accelerator) at a target or protons. This technique provided evidence for the existence of quarks. <span>proton-antiproton scattering as well.
</span>hope this helps
<span>We put a motion detector at </span>one end of the track<span> and put a cart on the track. ... Next, we put a motorized fan on the cart and let it push the cart down the track. ... This is what I would expect based on the velocity graph, since </span>acceleration<span> equals the slope of the velocity graph, which remains</span>constant<span> in time.</span>
The kinetic energy of any moving object is
(1/2) (mass) (speed²) .
For the object you described, that's
(1/2) (100 kg) (12.5 m/s)²
= (50 kg) (156.25 m²/s²)
= 7,812.5 joules
______________________________
Your attachment is way out of focus, and impossible to read.