answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
frutty [35]
2 years ago
12

Water initially at 200 kPa and 300°C is contained in a piston–cylinder device fitted with stops. The water is allowed to cool at

constant pressure until it exists as a saturated vapor and the piston rests on the stops. Then the water continues to cool until the pressure is 100 kPa
On the T−v diagram, sketch, with respect to the saturation lines, the process curves passing through the initial, intermediate, and final states of the water. Label the T, P and v values for end states on the process curves. Find the overall change in internal energy between the initial and final states per unit mass of water.
Physics
1 answer:
netineya [11]2 years ago
3 0

Answer:

Δu=1300kJ/kg  

Explanation:

Energy at the initial state

p_{1}=200kPa\\t_{1}=300^{o}\\u_{1}=2808.8kJ/kg(tableA-5)

Is saturated vapor at initial pressure we have

p_{2}=200kPa\\x_{2}=1(stat.vapor)\\v_{2}=0.8858m^3/kg(tableA-5)

Process 2-3 is a constant volume process

p_{3}=100kPa\\v_{3}=v_{2}=0.8858m^{3}/kg\\u_{3}=1508.6kJ/kg(tableA-5)

The overall in internal energy

Δu=u₁-u₃

We replace the values in equation

Δu=u₁-u₃

=2808.8kJ/kg-1508.6kJ/kg\\=1300kJ/kg

Δu=1300kJ/kg  

You might be interested in
A sailboat starts from rest and accelerates at a rate of 0.21 m/s^2 over a distance of 280 m. find the magnitude of the boat's f
sasho [114]

We use the kinematic equations,

v=u+at                                          (A)

S= ut + \frac{1}{2} at^2                  (B)

Here, u is initial velocity, v is final velocity, a is acceleration and t is time.

Given,  u=0, a=0.21 \ m/s^2 and s= 280 m.

Substituting these values in equation (B), we get

280 \ m = 0 +\frac{1}{2} (0.21 m/s^2) t^2 \\\\ t^2 = \frac{280 \times 2}{0.21 } \\\\ t= 51.63 \ s.

Therefore from equation (A),

v = 0 + (0.21) \times (51.63 s)= 10.84 \ m/s

Thus, the magnitude of the boat's final velocity is 10.84 m/s and the time taken by boat to travel the distance 280 m is 51.63 s



8 0
2 years ago
As shown in the figure below, Justin walks from the house to his truck on a windy day. He walks 20 m toward
juin [17]

Complete Question

The complete question is shown on the first uploaded image

Answer:

The velocity is   v =0.333 \  m/s in positive x -direction

The speed is s = 0.733 \ m/s

Explanation:

From the question we are told that

The distance from the house to truck is  D =  20 m

  The distance traveled back to retrieve  wind-blown hat is  d =  15

  The distance from the wind-blown hat position too the truck is  k =  20  m

  The total time taken is  t  =  75 s

Generally when calculating the displacement the Justin's backward movement to collect his wind - blown hat is taken as negative

Generally Justin's displacement is mathematically represented as

      L  =  20 - 15 + 20

=>    L  =  25 \ m

Generally the average velocity is mathematically represented as

          v  =  \frac{L}{t}

=>      v = \frac{25}{75}

=>      v =0.333 \  m/s

Generally the distance covered by Justin is mathematically represented as  

         R =  D+ d + k

=>      R =  20 + 15 +20

=>     R =  55 \  m

Generally Justin's average speed over a 75 s period is mathematically represented as

            s = \frac{R}{ t}

=>         s = \frac{55}{ 75}

=>        s = 0.733 \ m/s

8 0
2 years ago
A sister spins her brother in a circle of radius R at angular speed wi. Then the sister decreases her angular speed
Igoryamba

Answer:

The change in the centripetal acceleration of the brother,

                               Δa = V₂²/R - V₁²/R

Explanation:

Given data,

A sister spins her brother in a circle of radius, R

The angular velocity of the brother, ω₁ = V₁/R

The angular velocity of the brother, ω₂ = V₂/R

The centripetal acceleration is given by the relation

                                 a = V²/R

Therefore change in the centripetal acceleration of the brother,

                              Δa = V₂²/R - V₁²/R                                    

6 0
2 years ago
Consider a 4-mg raindrop that falls from a cloud at a height of 2 km. When the raindrop reaches the ground, it won't kill you or
docker41 [41]

Answer:

The work done by the air resistance is -0.0782 J

Explanation:

Hi there!

The energy of the raindrop has to be conserved, according to the law of conservation of energy.

Initially, the raindrop has only gravitational potential energy:

PE = m · g · h

Where:

PE = potential energy.

m = mass of the raindrop.

g = acceleration due to gravity (9.8 m/s²)

h = height.

Let´s calculate the initial potential energy of the drop:

(convert 4 mg into kg: 4 mg · 1 kg / 1 × 10⁶ mg = 4 × 10⁻⁶ kg)

PE = 4 × 10⁻⁶ kg · 9.8 m/s² · 2000  m

PE = 0.0784 J

When the drop starts falling, some of the potential energy is converted into kinetic energy and some energy is dissipated by the work done by the air resistance. On the ground all the initial potential energy has been either converted into kinetic energy or dissipated by the resistance of the air:

initial PE = final KE + W air

Where:

KE = kinetic energy.

W air = work done by the air resistance.

The kinetic energy when the raindrop reaches the ground is calculated as follows:

KE = 1/2 · m · v²

Where:

m = mass

v = velocity

Then:

KE = 1/2 ·  4 × 10⁻⁶ kg · (10 m/s)²

KE = 2 × 10⁻⁴ J

Now, we can calculate the work done by the air resistance:

initial PE = final KE + W air

0.0784 J = 2 × 10⁻⁴ J + W air

W air = 0.0784 J - 2 × 10⁻⁴ J

W air = 0.0782 J

Since the work is done in the opposite direction to the displacement, the work is negative, then, the work done by the air resistance is -0.0782 J.

5 0
2 years ago
A car wheel turns through 277° in 10.7 s. Calculate the angular speed of the wheel.
slava [35]

Answer:

The angular speed of the wheel is 0.452 rad/s

Explanation:

The angle through which the car wheel turns, Δθ = 277° = 277/360 × 2·π radian

The time it takes for the car wheel to turn, Δt = 10.7 s

The angular speed, ω is given by the following equation;

Angular \ speed = \dfrac{Change \ in \ angular \ rotation }{Change \ in \ time} = \dfrac{\Delta \theta}{\Delta t}

Substituting the known values for Δθ and Δt gives;

Angular \ speed = \dfrac{\dfrac{277 ^{\circ}}{360 ^{\circ }  }  \times 2 \times \pi \ radian}{10.7 \ seconds} \approx 0.452 \ rad/s

The angular speed of the wheel = 0.452 rad/s

3 0
2 years ago
Other questions:
  • Scientists in a test lab are testing the hardness of a surface before constructing a building. Calculations indicate that the en
    10·1 answer
  • PLEASE HELP!!!!!! WILL GIVE BRAINLIEST TO WHOEVER ANSWERS WITH THE RIGHT ANSWER !!!!!!!! 
    6·2 answers
  • Which of the following statements best describes the characteristic of the restoring force in the spring-mass system described i
    15·2 answers
  • Two wires are stretched between two fixed supports and have the same length. One wire A there is a second-harmonic standing wave
    7·1 answer
  • Mo is on a baseball team and hears that a ball thrown at a 45 degree angle from the ground will travel the furthest distance. Ho
    13·1 answer
  • Given a die, would it be more likely to get a single 6 in six rolls, at least two 6s in twelve rolls, or at least one-hundred 6s
    14·1 answer
  • . A lightbulb with a resistance of 2.9 ohms is operated using a 1.5-volt battery. At what rate is
    6·2 answers
  • At a certain instant the current flowing through a 5.0-H inductor is 3.0 A. If the energy in the inductor at this instant is inc
    15·1 answer
  • Which statement is not a good practice when working inside a computer case?
    12·1 answer
  • Which of the following statements accurately describes the atmospheric patterns that influence local weather?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!