Answer:
The order is 2>4>3>1 (TE)
Explanation:
Look up attached file
Answer:
E = k*Q₁/R₁² V/m
V = k*Q₁/R₁ Volt
Explanation:
Given:
- Charge distributed on the sphere is Q₁
- The radius of sphere is R₁
- The electric potential at infinity is 0
Find:
What is the electric field at the surface of the sphere?E.
What is the electric potential at the surface of the sphere?V
Solution:
- The 3 dimensional space around a charge(source) in which its effects is felt is known in the electric field.
- The strength at any point inside the electric field is defined by the force experienced by a unit positive charge placed at that point.
- If a unit positive charge is placed at the surface it experiences a force according to the Coulomb law is given by
F = k*Q₁/R₁²
- Then the electric field at that point is
E = F/1
E = k*Q₁/R₁² V/m
- The electric potential at a point is defined as the amount of work done in moving a unit positive charge from infinity to that point against electric forces.
- Thus, the electric potential at the surface of the sphere of radius R₁ and charge distribution Q₁ is given by the relation
V = k*Q₁/R₁ Volt
Answer:
(B) (length)/(time³)
Explanation
The equation x = ½ at² + bt³ has to be dimensionally correct. In other words the term bt³ and ½ at² must have units of change of position = length.
We solve in order to find the dimension of b:
[x]=[b]*[t]³
length=[b]*time³
[b]=length/time³
Answer:
(a) 104 N
(b) 52 N
Explanation:
Given Data
Angle of inclination of the ramp: 20°
F makes an angle of 30° with the ramp
The component of F parallel to the ramp is Fx = 90 N.
The component of F perpendicular to the ramp is Fy.
(a)
Let the +x-direction be up the incline and the +y-direction by the perpendicular to the surface of the incline.
Resolve F into its x-component from Pythagorean theorem:
Fx=Fcos30°
Solve for F:
F= Fx/cos30°
Substitute for Fx from given data:
Fx=90 N/cos30°
=104 N
(b) Resolve r into its y-component from Pythagorean theorem:
Fy = Fsin 30°
Substitute for F from part (a):
Fy = (104 N) (sin 30°)
= 52 N