Answer:
W = 506.75 N
Explanation:
tension = 2300 N
Rider is towed at a constant speed means there no net force acting on the rider.
hence taking all the horizontal force and vertical force in consideration.
net horizontal force:
F cos 30° - T cos 19° = 0
F cos 30° = 2300 × cos 19°
F = 2511.12 N
net vertical force:
F sin 30° - T sin 19°- W = 0
W = F sin 30° - T sin 19°
W = 2511.12 sin 30° - 2300 sin 19°
W = 506.75 N
Answer:
1.36
Explanation:
= Index of refraction of air = 1
= Index of refraction of plastic = ?
i = angle of incidence in air = 32.0° deg
r = angle of refraction in plastic = 23.0° deg
Using Snell's law
Sini =
Sinr
(1) SIn32.0 =
Sin23.0
= 1.36
The temperature will remain constant, at around 100 C, and the volume of water in the pot will decrease, as it turns into steam and floats away from the pot.
Answer:
Final Velocity = √(eV/m)
Explanation:
The Workdone, W, in accelerating a charge, 2e, through a potential difference, V is given as a product of the charge and the potential difference
W = (2e) × V = 2eV
And this work is equal to change in kinetic energy
W = Δ(kinetic energy) = ΔK.E
But since the charge starts from rest, initial velocity = 0 and initial kinetic energy = 0
ΔK.E = ½ × (mass) × (final velocity)²
(Velocity)² = (2×ΔK.E)/(mass)
Velocity = √[(2×ΔK.E)/(mass)]
ΔK.E = W = 2eV
mass = 4m
Final Velocity = √[(2×W)/(4m)]
Final Velocity = √[(2×2eV)/4m]
Final Velocity = √(4eV/4m)
Final Velocity = √(eV/m)
Hope this Helps!!!
Answer:
Answer:
15.67 seconds
Explanation:
Using first equation of Motion
Final Velocity= Initial Velocity + (Acceleration * Time)
v= u + at
v=3
u=50
a= - 4 (negative acceleration or deceleration)
3= 50 +( -4 * t)
-47/-4 = t
Time = 15.67 seconds