In the movement of the weight in vertical circle, using momentum balance, the largest tension is at the bottom of the circle. This is represented by:
<span>F = T - m g </span>
<span>T = F + m g
</span>F (centripetal) = mv^2/r
<span>= m v^2 / r + m g </span>
<span>m v^2 / r = T - m g </span>
<span>T= 0.5m * 100kgm/s^2 / 0.2kg - 9.81m/s^2 * 0.5m </span>
<span>T= 245 m^2/s^2 </span>
Answer:
Sonia will experience repulsion in two balloons
Explanation:
Here when we rub the balloon with the woolen cloth then due to friction between the cloth and balloon electrons from balloon will transfer to woolen cloth.
Due to transfer of electron the balloon will get positive charge which is given by

so here since both balloons are rubbed against woolen cloth so both balloon will get some positive charge
now we know by the property of charge that two similar charges will always repel each other so here two balloons will repel each other after they rubbed against woolen cloth.
Answer:
<h2>
The potential difference increases </h2>
Explanation:
from the relation 
where E= electric field (force per coulomb)
V= voltage
d= distance
Hence the voltage is going to be V= E×d.
Therefore this means that increasing the distance increases the voltage.
We need the power law for the change in potential energy (due to the Coulomb force) in bringing a charge q from infinity to distance r from charge Q. We are only interested in the ratio U₁/U₂, so I'm not going to bother with constants (like the permittivity of space).
<span>The potential energy of charge q is proportional to </span>
<span>∫[s=r to ∞] qQs⁻²ds = -qQs⁻¹|[s=r to ∞] = qQr⁻¹, </span>
<span>so if r₂ = 3r₁ and q₂ = q₁/4, then </span>
<span>U₁/U₂ = q₁Qr₂/(r₁q₂Q) = (q₁/q₂)(r₂/r₁) </span>
<span>= 4•3 = 12.</span>