Answer: 11 m/s
vinitial=2 m/s
time=3 s
acceleration = 3 m/s^2
vfinal = ?
The key here is that it is a constant acceleration, so we can use the constant acceleration equations. The easiest one to use would be:
vfinal=vinitial + a*t
We need vfinal, so algebraically we are ready to put in numbers into the equation:
vfinal=vinitial + a*t = 2 m/s + (3 m/s^2)*(3 s ) = 11 m/s is the final velocity
Answer:
Both of the stunt professionals will sustain injuries of the same seriousness
Explanation:
We are being told that both stunt professionals are standing from the same height, therefore they will attain the same equivalent speed at the bottom if we are to look at it from the principle of conservation of energy.
Now; According to principle of momentum; the momentum at which the first stunt professional A hits the ground be equal as the momentum with which stunt professional B will hit the wall.
Thus; both of the stunt professionals will sustain injuries of the same seriousness
Remember your kinematic equations for constant acceleration. One of the equations is

, where

= final position,

= initial position,

= initial velocity, t = time, and a = acceleration.
Your initial position is where you initially were before you braked. That means

= 100m. You final position is where you ended up after t seconds passed, so

= 350m. The time it took you to go from 100m to 350m was t = 8.3s. You initial velocity at the initial position before you braked was

= 60.0 m/s. Knowing these values, plug them into the equation and solve for a, your acceleration:
Your acceleration is approximately
.
Answer:
1)

2)

Explanation:
<u>Projectile Motion</u>
When an object is launched near the Earth's surface forming an angle
with the horizontal plane, it describes a well-known path called a parabola. The only force acting (neglecting the effects of the wind) is the gravity, which acts on the vertical axis.
The heigh of an object can be computed as

Where
is the initial height above the ground level,
is the vertical component of the initial velocity and t is the time
The y-component of the speed is

1) We'll find the vertical component of the initial speed since we have not enough data to compute the magnitude of 
The object will reach the maximum height when
. It allows us to compute the time to reach that point

Solving for 

Thus, the maximum heigh is

We know this value is 8 meters

Solving for 

Replacing the known values


2) We know at t=1.505 sec the ball is above Julie's head, we can compute




The neutral pH is 7. Less than 7 indicates an acid and more than 7 indicates a base (up to 14).
<span>
NaCl - it's a salt (we can't measure the pH)
H2O - it can be an acid but also a base (the pH it is almost neutral,meaning close to 7 )
HF - it is a strong acid
</span><span>
KOH
- it is a strong base (pH=14)
</span>
↓
He needs to use HF (Hydrogen fluoride) to decrease the pH.