I would say its a positive cgarge
Answer:
0.83 ω
Explanation:
mass of flywheel, m = M
initial angular velocity of the flywheel, ω = ωo
mass of another flywheel, m' = M/5
radius of both the flywheels = R
let the final angular velocity of the system is ω'
Moment of inertia of the first flywheel , I = 0.5 MR²
Moment of inertia of the second flywheel, I' = 0.5 x M/5 x R² = 0.1 MR²
use the conservation of angular momentum as no external torque is applied on the system.
I x ω = ( I + I') x ω'
0.5 x MR² x ωo = (0.5 MR² + 0.1 MR²) x ω'
0.5 x MR² x ωo = 0.6 MR² x ω'
ω' = 0.83 ω
Thus, the final angular velocity of the system of flywheels is 0.83 ω.
Answer:
Check the explanation
Explanation:
given
R = 1.5 cm
object distance, u = 1.1 cm
focal length of the ball, f = -R/2
= -1.5/2
= -0.75 cm
let v is the image distance
use, 1/u + 1/v = 1/f
1/v = 1/f - 1/u
1/v = 1/(-0.75) - 1/(1.1)
v = -0.446 cm <<<<<---------------Answer
magnification, m = -v/u
= -(-0.446)/1.1
= 0.405 <<<<<<<<<---------------Answer
The image is virtual
The image is upright
given
R = 1.5 cm
object distance, u = 1.1 cm
focal length of the ball, f = -R/2
= -1.5/2
= -0.75 cm
let v is the image distance
use, 1/u + 1/v = 1/f
1/v = 1/f - 1/u
1/v = 1/(-0.75) - 1/(1.1)
v = -0.446 cm <<<<<---------------Answer
magnification, m = -v/u
= -(-0.446)/1.1
= 0.405 <<<<<<<<<---------------Answer
Kindly check the diagram in the attached image below.
Answer:
d. at the same velocity
Explanation:
I will assume the car is also travelling westward because it was stated that the helicopter was moving above the car. In that case, it depends where the observer is. If the observer is in the car, the helicopter would look like it is standing still ( because both objects have the same velocity). If the observer is on the side of the road, both objects would be travelling at the same velocity. Also recall that, velocity is a vector quantity; it is direction-aware. Velocity is the rate at which the position changes but speed is the rate at which object covers distance and it is not direction wise. Hence velocity is the best option.
Answer:
C. the area of the rectangle plus the area of the triangle under the line
Explanation:
Based on the information provided, the velocity vs. time graph is a line with a positive slope and a y-intercept of (0, 3). The displacement is the area under this line. This area can be divided into a triangle and a rectangle. So of the options available, C is the correct one.