answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rina8888 [55]
2 years ago
13

An air-track glider undergoes a perfectly inelastic collision with an identical glider that is initially at rest. what fraction

of the first glider's initial kinetic energy is transformed into thermal energy in this collision?

Physics
2 answers:
Mashutka [201]2 years ago
6 0

Half of the first glider's initial kinetic energy is transformed into thermal energy in this collision.

\texttt{ }

<h3>Further explanation</h3>

Newton's second law of motion states that the resultant force applied to an object is directly proportional to the mass and acceleration of the object.

\large {\boxed {F = ma }

F = Force ( Newton )

m = Object's Mass ( kg )

a = Acceleration ( m )

Let us now tackle the problem !

\texttt{ }

<u>Given:</u>

mass of first glider = m₁ = m

mass of second glider = m₂ = m

initial speed of first glider = u₁ = u

initial speed of second glider = u₂ = 0

final speed of both gliders = v₁ = v₂ = v <em>→ perfectly inelatic collision</em>

<u>Asked:</u>

change in kinetic energy = ΔEk = ?

<u>Solution:</u>

<em>Firstly , we will use </em><em>Conservation of Momentum Law </em><em>as follows:</em>

m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2

mu + m(0) = mv + mv

mu = 2mv

u = 2v

\boxed {v = \frac{1}{2}u}

\texttt{ }

<em>Next , we could calculate the change in kinetic energy of first glider:</em>

\Delta Ek : Ek_1 = ( Ek_1 - Ek ) : Ek_1

\Delta Ek : Ek_1 = ( \frac{1}{2}mu^2 - \frac{1}{2}(2mv^2)) : (\frac{1}{2}mu^2)

\Delta Ek : Ek_1 = ( mu^2 - 2mv^2 ) : (mu^2)

\Delta Ek : Ek_1 = ( mu^2 - 2m(\frac{1}{2}u)^2 ) : (mu^2)

\Delta Ek : Ek_1 = ( mu^2 - 2m(\frac{1}{4}u^2) ) : (mu^2)

\Delta Ek : Ek_1 = ( mu^2 - \frac{1}{2}mu^2 ) : (mu^2)

\Delta Ek : Ek_1 = ( \frac{1}{2}mu^2 ) : (mu^2)

\Delta Ek : Ek_1 = \frac{1}{2} : 1

\boxed {\Delta Ek = \frac{1}{2} Ek_1}

\texttt{ }

<h3>Conclusion:</h3>

Half of the first glider's initial kinetic energy is transformed into thermal energy in this collision.

\texttt{ }

<h3>Learn more</h3>
  • Impacts of Gravity : brainly.com/question/5330244
  • Effect of Earth’s Gravity on Objects : brainly.com/question/8844454
  • The Acceleration Due To Gravity : brainly.com/question/4189441
  • Newton's Law of Motion: brainly.com/question/10431582
  • Example of Newton's Law: brainly.com/question/498822

\texttt{ }

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Dynamics

DiKsa [7]2 years ago
5 0
Refer to the diagram shown below.

The initial KE (kinetic energy) of the system is
KE₁ = (1/2)mu²

After an inelastic collision, the two masses stick together.
Conservation of momentum requires that
m*u = 2m*v
Therefore
v = u/2

The final KE is
KE₂ = (1/2)(2m)v²
       = m(u/2)²
       = (1/4)mu²
      = (1/2) KE₁

The loss in KE is
KE₁ - KE₂ = (1/2) KE₁.

Conservation of energy requires that the loss in KE be accounted for as thermal energy.

Answer:  1/2 

You might be interested in
Is a dimond a pure substance? yes or no
Evgen [1.6K]
Yes A diamond* is a pure substance
8 0
1 year ago
Read 2 more answers
Water enters the constant 130-mm inside-diameter tubes of a boiler at 7 MPa and 65°C and leaves the tubes at 6 MPa and 450°C wit
snow_lady [41]

The inlet velocity is 1.4 m/s and inlet volume is 0.019 m³/s.

Explanation:

When water entering the tube of constant diameter flows through the tube, it exhibits continuity of mass in the hydrostatics. So the mass of water moving from the inlet to the outlet tend to be same, but the velocity may differ.

As per mass flow equality which states that the rate of flow of mass in the inlet is equal to the product of area of the tube with the velocity of the water and the density of the tube.

Since, the inlet volume flow is measured as the product of velocity with the area.

Inlet volume flow=Inlet velocity*Area*time

And the mass flow rate is  

Mass flow rate in the inlet=density*area*inlet velocity*time

Mass flow rate in the outlet=density*area*outlet velocity*time

Since, the time and area is constant, the inlet and outlet will be same as

(Mass inlet)/(density*inlet velocity)=Area*Time

(Mass outlet)/(density*outlet velocity)=Area*Time

As the ratio of mass to density is termed as specific volume, then  

(Specific volume inlet)/(Inlet velocity)=(Specific volume outlet)/(Outlet velocity)

Inlet velocity=  (Specific volume inlet)/(Specific volume outlet)*Outlet velocity

As, the specific volume of water at inlet is 0.001017 m³/kg and at outlet is 0.05217 m³/kg and the outlet velocity is given as 72 m/s, the inlet velocity

is

Inlet velocity = \frac{0.001017}{0.05217}*72 =1.4035 m/s

So, the inlet velocity is 1.4035 m/s.

Then the inlet volume will be

Inlet volume = inlet velocity*area of circle=\pi  r^{2}*inlet velocity

As the diameter of tube is 130 mm, then the radius is 65 mm and inlet velocity is 1.4 m/s

Inlet volume = 1.4*3.14*65*65*10^{-6} =0.019 \frac{m^{3} }{s}

So, the inlet volume is 0.019 m³/s.

Thus, the inlet velocity is 1.4 m/s and inlet volume is 0.019 m³/s.

4 0
1 year ago
Microwave ovens emit microwave energy with a wavelength of 12.6 cm. what is the energy of exactly one photon of this microwave r
Helga [31]

We need the frequency of the photon, it is v = c/ λ

Where c is 3 x 10^8 ms^-1 and λ is the wave length

We also need the expression of connecting frequency to energy of photon 

which is E = hv where h is Planck’s constant

Combining the two equations will give us:

E = h x c/λ

Inserting the values, we will have:

E = 6.626 x 10^-34 x 3 x 10^8 / 0.126

E = 1.578 x 10^ -24 J

7 0
2 years ago
Read 2 more answers
As an object in motion becomes heavier, its kinetic energy _____. A. increases exponentially B. decreases exponentially C. incre
diamong [38]

Answer:

USE SOCRACTIC IT WOULD REALLY HELP

4 0
2 years ago
Read 2 more answers
Using the right-hand rule from your lessons, determine the directions of the electrical current and magnetic field of the electr
aliya0001 [1]

Answer:

Hello there use something that looks like this

Explanation:

This is an accurate representation of something you are working on!

As you can see the wire and the core are represented on the left and is showing how it can be represented on your right hand and how they are similar!

5 0
2 years ago
Other questions:
  • Object A with a mass of 500 kilograms hits stationary object B with a mass of 920 kilograms. If the collision is elastic, what h
    14·1 answer
  • For what value of the ratio r/a of plate radius to separation between the plates does the electric field at the point x=a/2 on t
    15·1 answer
  • A 96-mH solenoid inductor is wound on a form 0.80 m in length and 0.10 m in diameter. A coil is tightly wound around the solenoi
    12·1 answer
  • The banking angle in a turn on the Olympic bobsled track is not constant, but increases upward from the horizontal. Coming aroun
    7·1 answer
  • In an experiment, one of the forces exerted on a proton is F⃗ =−αx2i^, where α=12N/m2. What is the potential-energy function for
    12·1 answer
  • An object with charge 4.3x10-5 C pushes another object 0.31 micrometers away with a force of 7 N. What is the total charge of th
    11·1 answer
  • Two loudspeakers, A and B, are driven by the same amplifier and emit sinusoidal waves in phase. The frequency of the waves emitt
    6·1 answer
  • A solid sphere of mass 8.6 kg, made of metal whose density is 3,400 kg/, hangs by a cord. When the sphere is immersed in a liqui
    8·1 answer
  • A farmer wants to determine which of two brands of cow feed is best for the cows on a farm. Before using one of the feeds on all
    9·2 answers
  • A. curious kitten pushes a ball of yarn at rest with its nose, displacing the ball of yarn 0.175 m in 2.00s. What is the acceler
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!