In a circular motion scenario, the force that pulls the revolving object towards the centre is the force that produces the centripetal acceleration. So, in this case, the tension on the string is the force that pulls the puck towards the centre.
Therefore, it is the tension in the string that causes the centripetal acceleration of the puck
Hope I helped!! xx
Answer:
Explanation:
Electric field talks about a region around a charged particle or object within which a force would be exerted on other charged particles or objects. to find the electric field inside the bulb we will apply the electric filed formula.
Please kindly check attachment for step by step explaination.
<span>These are inert gases, so we can assume they don't react with one another. Because the two gases are also subject to all the same conditions, we can pretend there's only "one" gas, of which we have 0.458+0.713=1.171 moles total. Now we can use PV=nRT to solve for what we want.
The initial temperature and the change in temperature. You can find the initial temperature easily using PV=nRT and the information provided in the question (before Ar is added) and solving for T.
You can use PV=nRT again after Ar is added to solve for T, which will give you the final temperature. The difference between the initial and final temperatures is the change. When you're solving just be careful with the units!
SIDE NOTE: If you want to solve for change in temperature right away, you can do it in one step. Rearrange both PV=nRT equations to solve for T, then subtract the first (initial, i) from the second (final, f):
PiVi=niRTi --> Ti=(PiVi)/(niR)
PfVf=nfRTf --> Tf=(PfVf)/(nfR)
ΔT=Tf-Ti=(PfVf)/(nfR)-(PiVi)/(niR)=(V/R)(Pf/nf-Pi/ni)
In that last step I just made it easier by factoring out the V/R since V and R are the same for the initial and final conditions.</span>
Answer:
Explanation:
Electric field due to charge at origin
= k Q / r²
k is a constant , Q is charge and r is distance
= 9 x 10⁹ x 5 x 10⁻⁶ / .5²
= 180 x 10³ N /C
In vector form
E₁ = 180 x 10³ j
Electric field due to q₂ charge
= 9 x 10⁹ x 3 x 10⁻⁶ /.5² + .8²
= 30.33 x 10³ N / C
It will have negative slope θ with x axis
Tan θ = .5 / √.5² + .8²
= .5 / .94
θ = 28°
E₂ = 30.33 x 10³ cos 28 i - 30.33 x 10³ sin28j
= 26.78 x 10³ i - 14.24 x 10³ j
Total electric field
E = E₁ + E₂
= 180 x 10³ j +26.78 x 10³ i - 14.24 x 10³ j
= 26.78 x 10³ i + 165.76 X 10³ j
magnitude
= √(26.78² + 165.76² ) x 10³ N /C
= 167.8 x 10³ N / C .
Answer:
a. directive zoning
Explanation:
Directive zoning is an instrument used in master plans, whereby the city is divided into areas on which differentiated land use and land use guidelines apply, especially urban indexes. Directive zoning acts primarily by controlling two main elements: the use and size (or size) of lots and buildings. It is therefore assumed that the end result achieved through individual actions is in line with the municipality's objectives, which include proportionality between occupation and infrastructure, the need to protect fragile areas and / or cultural interest, the harmony from the volumetric point of view, etc.