answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ira Lisetskai [31]
2 years ago
8

Suppose you see two main-sequence stars of the exact same spectral type. Star 1 is dimmer in apparent brightness than Star 2 by

a factor of 100. What can you conclude? (Neglect any effects that might be caused by interstellar dust and gas.)
Physics
1 answer:
katrin2010 [14]2 years ago
3 0

Options:

A. The luminosity of Star 1 is a factor of 100 less than the luminosity of Star 2.

B. Star 1 is 100 times more distant than Star 2.

C. Without first knowing the distances to these stars, you cannot draw any conclusions about how their true luminosities compare to each other.

D. Star 1 is 10 times more distant than Star 2.

E. Star 1 is 100 times nearer than Star 2.

Answer:

D. Star 1 is 10 times more distant than star 2

Explanation:

For two stars of identical size and temperature, the closer one to us will appear brighter. The relationship between the distance and luminosity of stars is an inverse- square relationship.

Luminosity, L = 1/r²

Where r is the distance of the star to the earth

Since star 1 is dimmer in brightness than star 2 by a factor of 100,

L₁/L₂ = 1/100

i.e. L₁ = 1, L₂=100

L₁ = 1/r₁² ............(1)

1 =  1/r₁²

L₂ = 1/r₂²

100 =  1/r₂² .........(2)

divide equation (2) by equation (1)

100/1 = ( 1/r₂² )/ (1/r₁²)

100 = (r₁/r₂)²

r₁/r₂ = √100

r₁/r₂ = 10

r₁ = 10r₂

You might be interested in
Instructions:Drag the tiles to the correct boxes to complete the pairs. Match each term with its definition. Tiles conductor rad
UNO [17]

<span>High SchoolPhysics5+3 pts</span><span>Instructions:Drag the tiles to the correct boxes to complete the pairs. Match each term with its definition. Tiles conductor radiation insulator convection conduction Pairs heat transfer involving direct contact of particles arrowBoth heat transfer in fluids arrowBoth heat transfer that doesn’t need a medium arrowBoth substance that doesn’t allow heat through arrowBoth substance that allows heat through arrowBoth

These are the answers:

</span>Conductor - <span>substance that allows heat through 
</span>Radiation - <span> heat transfer that doesn’t need a medium
</span>Insulator -  <span>substance that doesn’t allow heat through 
</span>Convection - <span>heat transfer in fluids
Conduction - </span>heat transfer involving direct contact of particles 
4 0
2 years ago
Read 2 more answers
An ideal monatomic gas initially has a temperature of T and a pressure of p. It is to expand from volume V1 to volume V2. If the
yawa3891 [41]

Answer:

Isothermal :   P2 = ( P1V1 / V2 ) ,  work-done pdv = nRT * In( \frac{V2}{v1} )

Adiabatic : : P2 = \frac{P1V1^{\frac{5}{3} } }{V2^{\frac{5}{3} } }  , work-done =

W = (3/2)nR(T1V1^(2/3)/(V2^(2/3)) - T1)

Explanation:

initial temperature : T

Pressure : P

initial volume : V1

Final volume : V2

A) If expansion was isothermal calculate final pressure and work-done

we use the gas laws

= PIVI = P2V2

Hence : P2 = ( P1V1 / V2 )

work-done :

pdv = nRT * In( \frac{V2}{v1} )

B) If the expansion was Adiabatic show the Final pressure and work-done

final pressure

P1V1^y = P2V2^y

where y = 5/3

hence : P2 = \frac{P1V1^{\frac{5}{3} } }{V2^{\frac{5}{3} } }

Work-done

W = (3/2)nR(T1V1^(2/3)/(V2^(2/3)) - T1)

Where    T2 = T1V1^(2/3)/V2^(2/3)

3 0
2 years ago
A toroidal solenoid has an inner radius of 12.0 cm and an outer radius of 15.0 cm . It carries a current of 1.50 A . Part A How
tensa zangetsu [6.8K]

Answer:

The number of turns is  N  = 1750 \ turns

Explanation:

From the question we are told that

  The inner radius is r_i =  12.0 \  cm  =  0.12 \  m

   The outer radius is  r_o =  15.0 \  cm  =  0.15 \  m

   The current it carries is I =  1.50 \  A

    The magnetic field is  B  =   3.75 mT = 3.75 *10^{-3} \  T

   The distance from the center is d =  14.0 \ cm  =  0.14 \  m

Generally the number of turns is mathematically represented as

    N  =  \frac{2 *  \pi  * d  *  B}{ \mu_o *  r_o }

Generally  \mu_o is the permeability of free space with value  

    \mu_o  =  4\pi * 10^{-7} \ N/A^2

So

  N  =  \frac{2 *  3.142   * 0.14 *  3.75 *10^{-3} }{ 4\pi * 10^{-7}  * 0.15  }

  N  = 1750 \ turns

5 0
2 years ago
Two large parallel conducting plates carrying opposite charges of equal magnitude are separated by 2.20 cm. Part A If the surfac
alukav5142 [94]

Answer:

5308.34 N/C

Explanation:

Given:

Surface density of each plate (σ) = 47.0 nC/m² = 47\times 10^{-9}\ C/m^2

Separation between the plates (d) = 2.20 cm

We know, from Gauss law for a thin sheet of plate that, the electric field at a point near the sheet of surface density 'σ' is given as:

E=\dfrac{\sigma}{2\epsilon_0}

Now, as the plates are oppositely charged, so the electric field in the region between the plates will be in same direction and thus their magnitudes gets added up. Therefore,

E_{between}=E+E=2E=\frac{2\sigma}{2\epsilon_0}=\frac{\sigma}{\epsilon_0}

Now, plug in  47\times 10^{-9}\ C/m^2 for 'σ' and 8.85\times 10^{-12}\ F/m for \epsilon_0 and solve for the electric field. This gives,

E_{between}=\frac{47\times 10^{-9}\ C/m^2}{8.854\times 10^{-12}\ F/m}\\\\E_{between}= 5308.34\ N/C

Therefore, the electric field between the plates has a magnitude of 5308.34 N/C

5 0
2 years ago
Armand is monitoring a large sealed tank by way of a sensor that records the liquid level over time on a graph. He looks at the
timofeeve [1]

Answer:

i need ppoints

Explanation:

4 0
2 years ago
Read 2 more answers
Other questions:
  • Moving company uses a machine to raise a 900 Newton refrigerator to the second floor of a building machine consists of a single
    8·2 answers
  • Jamie pushes a book off a table. The push is an example of a contact force because A. Jamie used energy. B. Jamie had to touch t
    11·2 answers
  • Brad is working on a speed problem in physics class. The problem tells him that a girl runs from her house to the park 0.05 km a
    10·2 answers
  • A 25.0-kg child plays on a swing having support ropes that are 2.20 m long. Her brother pulls her back until the ropes are 42.0°
    5·1 answer
  • As in the video, we apply a charge +Q to the half-shell that carries the electroscope. This time, we also apply a charge –Q to t
    10·2 answers
  • An 18-cm-long bicycle crank arm, with a pedal at one end, is attached to a 20-cm-diameter sprocket, the toothed disk around whic
    12·1 answer
  • Two speedboats are traveling at the same speed relative to the water in opposite directions in a moving river. An observer on th
    9·1 answer
  • Maia says that both lines on this position vs time graph show acceleration. Is she correct? Why or why not?
    13·2 answers
  • A champion athlete can produce one horsepower (746 W) for a short period of time. The number of 16-cm-high steps a 70-kg athlete
    13·1 answer
  • A rod 16.0 cm long is uniformly charged and has a total charge of -25.0 µC. Determine the magnitude and direction of the electri
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!