Answer:
Speed of the this part is given as

Also the direction of the velocity of the third part of plate is moving along 135 degree with respect to one part of the moving plate
Explanation:
As we know by the momentum conservation of the system
we will have

here we know that

the momentum of two parts are equal in magnitude but perpendicular to each other
so we will have


now from above equation we have



Also the direction of the velocity of the third part of plate is moving along 135 degree with respect to one part of the moving plate
Answer:
The magnitude of the average force exerted on the water by the blade is 960 N.
Explanation:
Given that,
The mass of water per second that strikes the blade is, 
Initial speed of the oncoming stream, u = 16 m/s
Final speed of the outgoing water stream, v = -16 m/s
We need to find the magnitude of the average force exerted on the water by the blade. It can be calculated using second law of motion as :



F = -960 N
So, the magnitude of the average force exerted on the water by the blade is 960 N. Hence, this is the required solution.
The correct answer to the question is that the lost mass has been converted into energy.
EXPLANATION:
From Einstein's theory, we know that energy and mass are inter convertible .
When some amount of mass is lost, same amount of energy equivalent to mass is produced.
Let us consider m is the mass lost during any reaction. Hence, the amount of energy produced will be-
Energy E =
Here, c is the velocity of light i.e c = 
As per the question, uranium-235 undergoes fission. The amount of mass defect is 0.1 %.
The mass defect is defined as the difference between mass of reactants and products. During the fission, energy is produced.
The energy produced in this reaction is nothing else than the energy equivalent to mass defect. Approximately 199.5 Mev of energy equivalent to this mass defect is produced in this reaction.
Answer:
Bounce 1 , pass 3, emb2
Explanation:
(By the way I am also doing that question on College board physics page) For the Bounce arrow, since it bumps into the object and goes back, it means now it has a negative momentum, which means a larger momentum is given to the object. P=mv, so the velocity is larger for the object, and larger velocity means a larger kinetic energy which would result in a larger change in the potential energy. Since K=0.5mv^2=U=mgh, a larger potential energy would have a larger change in height which means it has a larger angle θ with the vertical line. Comparing with the "pass arrow" and the "Embedded arrow", the embedded arrow gives the object a larger momentum, Pi=Pf (mv=(M+m)V), it gives all its original momentum to the two objects right now. (Arrow and the pumpkin), it would have a larger velocity. However for the pass arrow, it only gives partial of its original momentum and keeps some of them for the arrow to move, which means the pumpkin has less momentum, means less velocity, and less kinetic energy transferred into the potential energy, and means less change in height, less θangle. So it is Bounce1, pass3, emb2.
Answer:
41.27m/s
Explanation:
According to law of conservation of momentum
m1u1+m2u2 = (m1+m2)v
m1 and m2 are the masses
u1 and u2 are the initial velocities
v is the velocity after impact
Given
m1 = 0.2kg
u1 = 43.7m/s
m2 = 45.9g = 0.0459kg
u2 = 30.7m/s
Required
Velocity after impact v
Substitute the given parameters into the formula
0.2(43.7)+0.0459(30.7) = (0.2+0.0459)v
8.74+1.409 = 0.2459v
10.149 = 0.2459v
v = 10.149/0.2459
v = 41.27m/s
Hence the speed of the golf ball immediately after impact is 41.27m/s