Faster than. Hope this helps!!!
Answer:

Explanation:
first write the newtons second law:
F
=δma
Applying bernoulli,s equation as follows:
∑
Where,
is the pressure change across the streamline and
is the fluid particle velocity
substitute
for {tex]γ[/tex] and
for 

integrating the above equation using limits 1 and 2.

there the bernoulli equation for this flow is 
note:
=density(ρ) in some parts and change(δ) in other parts of this equation. it just doesn't show up as that in formular
Answer:
assume nitrogen is an ideal gas with cv=5R/2
assume argon is an ideal gas with cv=3R/2
n1=4moles
n2=2.5 moles
t1=75°C <em>in kelvin</em> t1=75+273
t1=348K
T2=130°C <em>in kelvin</em> t2=130+273
t2=403K
u=пCVΔT
U(N₂)+U(Argon)=0
<em>putting values:</em>
=>4x(5R/2)x(Tfinal-348)=2.5x(3R/2)x(T final-403)
<em>by simplifying:</em>
Tfinal=363K
1 watt = 1 joule/sec
2,000 watts = 2,000 joules/sec
(2,000 joule/sec) x (120 sec)
= (2,000 x 120) (joule-sec/sec)
= 240,000 joules .
Explanation:
Below is an attachment containing the solution.