Answer:
44.4m/s^2
Explanation:
Use the formula...S = ut + 1/2at^2
where...S = 32m...u = 0m/s....t = 1.20s
32 = (0)(1.20) + 0.5(1.20^2)a
;Acceleration of free fall = 44.4m/s^2
Assume the wooden piece prevents the balloon from rising, is not so heavy as to cause the balloon to descend. and the 15 m/s is horizontal velocity “riding the wind,” That horizontal velocity does not affect the time the wood will take to reach the ground after release. Initial vertical velocity is zero.
s = u t + 1/2 g t^2
s is the height above ground, 300 m.
u is initial vertical velocity, zero.
t is time to reach the ground.
g is acceleration of gravity near Earth, 9.8 m/s^2.
300 m = 0 t + 1/2 (9.8 m/s^2) t^2
300 m = (4.9 m/s^2) t^2
61.22 s^2 = t^2
7.82 seconds = t
Answer:
Separation increases at all times that rock X falls because it falls with a greater speed
Explanation:
For both rocks, let initial velocity ∪=0
To find the displacement at any given time interval of Δt then
S= ∪Δt +0.5gΔt²
Since rock X is first released followed by Y, then X has a greater speed than Y therefore the distance covered by X is longer. This is because despite 0.5gΔt² being same for both rocks at any time Δt but rock X having already attained some velocity, its ∪Δt is more hence the separation S increases. Conclusively, S increases at all times that rock X falls since rock X falls with a greater velocity than rock Y
Answer:
(a) Rm = 268.4 m
(b) f = 6
Explanation:
The horizontal range of a projectile is given by the following formula:
R = V₀² Sin 2θ/g
(a)
For moon:
R = Range on moon = Rm
V₀ = Launch Speed = 28 m/s
θ = Launch Angle = 17°
g = acceleration due to gravity on moon = (9.8 m/s²)/6 = 1.63 m/s²
Therefore,
Rm = (28 m/s)²Sin (2*17°)/(1.63 m/s²)
<u>Rm = 268.4 m</u>
(b)
For Earth:
R = Range on Earth = Re
V₀ = Launch Speed = 28 m/s
θ = Launch Angle = 17°
g = acceleration due to gravity on Earth = 9.8 m/s²
Therefore,
Re = (28 m/s)²Sin (2*17°)/(9.8 m/s²)
Re = 44.7 m
Therefore.
f = Rm/Re = 268.4 m/44.7 m
<u>f = 6</u>
Answer:
= 22.41rad/s
Explanation:
First, we know that:
a = 4 rad/s^2
S = 10 rev = 62.83 rad
Now we know that:
where
is the final angular velocity,
the initial angular velocity, a is the angular aceleration and S the radians.
Replacing, we get:
Finally, solving for
:
= 22.41rad/s