Answer:
Explanation:
Constant pressure molar heat capacity Cp = 29.125 J /K.mol
If Cv be constant volume molar heat capacity
Cp - Cv = R
Cv = Cp - R
= 29.125 - 8.314 J
= 20.811 J
change in internal energy = n x Cv x Δ T
n is number of moles , Cv is molar heat capacity at constant volume , Δ T is change in temperature
Putting the values
= 20 x 20.811 x 15
= 6243.3 J.
Answer:
d ≈ 7,6 g/cm³
Explanation:
d = m/V = 40g/5,27cm³ ≈ 7,6 g/cm³
V = l³ = (1.74cm)³ ≈ 5,27 cm³
Explanation:
(a) Displacement of an object is the shortest path covered by it.
In this problem, a student is biking to school. She travels 0.7 km north, then realizes something has fallen out of her bag. She travels 0.3 km south to retrieve her item. She then travels 0.4 mi north to arrive at school.
0.4 miles = 0.64 km
displacement = 0.7-0.3+0.64 = 1.04 km
(b) Average velocity = total displacement/total time
t = 15 min = 0.25 hour

Hence, this is the required solution.
Answer:
6.78 X 10³ N/C
Explanation:
Electric field near a charged infinite plate
= surface charge density / 2ε₀
Field will be perpendicular to the surface of the plate for both the charge density and direction of field will be same so they will add up.
Field due to charge density of +95.0 nC/m2
E₁ = 95 x 10⁻⁹ / 2 ε₀
Field due to charge density of -25.0 nC/m2
E₂ = 25 x 10⁻⁹ / 2ε₀
Total field
E = E₁ + E₂
= 95 x 10⁻⁹ / 2 ε₀ + 25 x 10⁻⁹ / 2ε₀
= 6.78 X 10³ N/C
Answer:
Speed of the this part is given as

Also the direction of the velocity of the third part of plate is moving along 135 degree with respect to one part of the moving plate
Explanation:
As we know by the momentum conservation of the system
we will have

here we know that

the momentum of two parts are equal in magnitude but perpendicular to each other
so we will have


now from above equation we have



Also the direction of the velocity of the third part of plate is moving along 135 degree with respect to one part of the moving plate