answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Papessa [141]
2 years ago
11

On Mars, where air resistance is negligible, an astronaut drops a rock from a cliff and notes that the rock falls about d meters

during the first t seconds of its fall. Assuming the rock does not hit the ground first, how far will it fall during the first 4t seconds of its fall?
Physics
2 answers:
Lana71 [14]2 years ago
8 0

The distance covered by the rock during the 4t seconds of its fall will be \fbox{16d}.

Explanation:

Given:

Distance covered by the rock in t\text{ sec} is d.

Concept:

As the astronaut drops the rock from the top of a cliff, the stone falls freely under the acceleration due to gravity of the Mars. This motion of the rock on the surface of the mass occurs according to the second equation of motion.

\boxed{S=v_it+\dfrac{1}{2}g_mt^2}

Here, S is the distance covered by the rock, v_i is the initial velocity of the rock, g_m is the acceleration due to gravity on the surface of Mars and t is the time for which the rock falls.

Since the rock is dropped from the top of the cliff, the rock will not have any initial velocity. So, the initial velocity of the rock will be zero.

Substitute the values in the given equation.

d=0(t)+\dfrac{1}{2}g_mt^2\\d=\dfrac{1}{2}g_mt^2

Now, in order to find the distance covered by the rock as it falls for time 4t, substitute 4t for t in the above expression.

\begin{aligned}d'&=0(t)+\dfrac{1}{2}g_m(4t)^2\\&=16.\dfrac{1}{2}g_mt^2\end{aligned}

Substitute d for \dfrac{1}{2}g_mt^2 in above expression.

d'=16.d

Thus, The distance covered by the rock during the 4t seconds of its fall will be \fbox{16d}.

Learn More:

1. Effect on the acceleration while sliding down the hill brainly.com/question/2286502

2. Expression for the acceleratuon of the block under friction brainly.com/question/6088121

3. Magnitude of acceleration of the car brainly.com/question/6423792

Answer Details:

Grade: High School

Subject: Physics

Chapter: Acceleration

Keywords:

Mars, cliff, stone, acceleration, gravity, falls, rock, top, time, t, 4t, distance, ground, equation of motion, initial velocity.

dimulka [17.4K]2 years ago
7 0

Answer:

d_1 = 16 d

Explanation:

As we know that initial speed of the fall of the stone is ZERO

v_i = 0

also the acceleration due to gravity on Mars is g

so we have

d = v_i t + \frac{1}{2}gt^2

now we have

d = 0 + \frac{1}{2}g t^2

now if the same is dropped for 4t seconds of time

then again we will use above equation

d_1 = 0 + \frac{1}{2}g(4t)^2

d_1 = 16(\frac{1}{2}gt^2)

d_1 = 16 d

You might be interested in
Specific agricultural uses of water are all of the following except _____. evaporation growing crops raising livestock cleaning
Tamiku [17]
Evaporation.............
5 0
2 years ago
Read 2 more answers
Mark and Balthazar are preparing to conduct neutralization reactions in which they add a base to two different solutions, citric
zhuklara [117]
Lab safety equipment prevents damage from accidents and helps keep the people working in the lab safe. The equipment goes hand in hand with the clothing of the person. The first step would be to wear closed shoes and a lab coat.
The equipment that must be worn are goggles to protect the eyes from irritants and latex gloves to protect the skin on the hands.
5 0
2 years ago
Read 2 more answers
Lucy and her bike together have a mass of 120kg. She slows down from 4.5m/s to 3.5m/s. How much kinetic energy does she lose?
vovangra [49]
The kinetic energy of a moving object is given by
K= \frac{1}{2}mv^2
where m is the object's mass and v its velocity.

In our problem, the initial kinetic energy is:
K_i =  \frac{1}{2} m v_i^2 = \frac{1}{2}(120 kg) (4.5 m/s)^2=1215 J

while the final kinetic energy is:
K_f =  \frac{1}{2}mv_f^2 =  \frac{1}{2}(120 kg)(3.5 m/s)^2= 735 J

So, the kinetic energy lost by Lucy and her bike is
\Delta K = K_i - K_f = 1215 J - 735 J = 480 J
7 0
2 years ago
For the meter stick shown in figure 10-4, the force F1 10.0 N acts at 10.0 cm. What is the magnitude of torque due to F1 about a
Phantasy [73]

Torque is equal position vector times (r) times force vector (F).  Since F= 10 N and r = 0.1 m, so the torque is equal to (10 N) x ( 0.1 m) = 1Nm. The direction of the torque would be into the screen, clockwise rotation.

8 0
2 years ago
calculate the magnitude of impulse applied to a 0.75 kilogram cart to change its velocity from 0.50 meters per second east to 2.
ella [17]

Answer:

1.125 N s towards  East

Explanation:

since both velocities are in same direction  hence change in velocity is

Δ V = final - initial

       = 2.00 - 0.50

       = 1.50 towards East

impulse = change of linear momentum

             = mass ×  change in velocity

            =  0.75 ×1.50

          =  1.125 N s towards  East

8 0
1 year ago
Other questions:
  • A distance of 2.00 mm separates two objects of equal mass. If the gravitational force between them is 0.0104 N, find the mass of
    8·1 answer
  • A snowstorm was predicted in Chicago. Identify the possible upper air temperature, surface temperature, and air pressure of Chic
    11·2 answers
  • A future use of space stations may be to provide hospitals for severely burned persons. it is very painful for a badly burned pe
    13·1 answer
  • Two tiny particles having charges 20.0 μC and 8.00 μC are separated by a distance of 20.0 cm What are the magnitude and directio
    8·1 answer
  • A neutron star has a mass of 2.0 × 1030 kg (about the mass of our sun) and a radius of 5.0 × 103 m (about the height of a good-s
    14·2 answers
  • Which structure contains the lowest amount of oxygen?
    5·2 answers
  • A magnetic dipole with a dipole moment of magnitude 0.0243 J/T is released from rest in a uniform magnetic field of magnitude 57
    13·2 answers
  • Gibbons, small Asian apes, move by brachiation, swinging below a handhold to move forward to the next handhold. A 8.6 kg gibbon
    6·1 answer
  • Solenoid 2 has twice the diameter, twice the length, and twice as many turns as solenoid 1. How does the field B2 at the center
    14·1 answer
  • Two astronauts, A and B, both with mass of 60Kg, are moving along a straight line in the same direction in a weightless spaceshi
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!