Answer:
a)
b)
Explanation:
Given that
v(t) = 5 t i + t² j - 2 t³ k
We know that acceleration a is given as



Therefore the acceleration function a will be

The acceleration at t = 2 s
a= 5 i + 2 x 2 j - 6 x 2² k m/s²
a=5 i + 4 j -24 k m/s²
The magnitude of the acceleration will be

a= 24.83 m/s²
The direction of the acceleration a is given as

a)
b)
156.8 Joules of energy is in the box's gravitational potential energy store
<u>Explanation</u>:
<em>Given:</em>
Mass of the box Dane is holding = 8 Kilograms
Height at which Dane is holding the box above the ground= 2 metres
<em>To Find:</em>
Gravitational potential energy in the box=?
<em>Solution:</em>
gravitational potential energy is the work done per mass on a object to move that object from one fixed location to to another location against gravity.Its unit is joules or J
Thus Gravitational potential energy is represented as,

where
is the gravitational potential energy
m is the mass
h is the height
g is the gravitational force( 9.8
)
Now substituting the given values,


The surrounding air will become warm when water vapor condenses. The vapors when become water will give away latent heat they have, we know that latent heat is required for the object to change states, so, the latent heat the water vapor had when it became water vapor from water will be given out when it again becomes water.
<span>Acceleration is the change in velocity divided by time taken. It has both magnitude and direction. In this problem, the change in velocity would first have to be calculated. Velocity is distance divided by time. Therefore, the velocity here would be 300 m divided by 22.4 seconds. This gives a velocity of 13.3928 m/s. Since acceleration is velocity divided by time, it would be 13.3928 divided by 22.4, giving a final solution of 0.598 m/s^2.</span>
Answer: -2.5
Explanation:
1/2(-5)= -2.5
-2.5(1)= -2.5
Got it right in Khan Academy. You’re welcome.