As per kinematics equation we are given that

now we are given that
a = 2.55 m/s^2


now we need to find x
from above equation we have



so it will cover a distance of 93.2 m
The braking force is -400 N
Explanation:
We can solve this problem by using the impulse theorem, which states that the impulse applied on the ferry (the product of force and time) is equal to its change in momentum:

where in this problem, we have:
F is the force applied by the brakes
is the time interval
m = 13,000 kg is the mass of the ferry
u = 2.0 m/s is the initial velocity
v = 0 is the final velocity
And solving for F, we find the force applied by the brakes:

where the negative sign indicates that the direction is backward.
Learn more about impulse:
brainly.com/question/9484203
#LearnwithBrainly
Therefore, it can be reasonably concluded according to your
unfinished syllogism, that there are many people who do not
think scientifically.
Answer:
First Question

Second Question
The wavelength is for an X-ray
Explanation:
From the question we are told that
The width of the wall is 
The first excited state is
The ground state is 
Gnerally the energy (in MeV) of the photon emitted when the proton undergoes a transition is mathematically represented as
![E = \frac{h^2 }{ 8 * m * l^2 [ n_1^2 - n_0 ^2 ] }](https://tex.z-dn.net/?f=E%20%20%20%3D%20%20%20%5Cfrac%7Bh%5E2%20%7D%7B%208%20%2A%20m%20%20%2A%20%20l%5E2%20%5B%20n_1%5E2%20-%20n_0%20%5E2%20%5D%20%7D)
Here h is the Planck's constant with value 
m is the mass of proton with value 
So
![E = \frac{( 6.626*10^{-34})^2 }{ 8 * (1.67 *10^{-27}) * (10 *10^{-15})^2 [ 2^2 - 1 ^2 ] }](https://tex.z-dn.net/?f=E%20%20%3D%20%20%20%5Cfrac%7B%28%206.626%2A10%5E%7B-34%7D%29%5E2%20%7D%7B%208%20%2A%20%281.67%20%2A10%5E%7B-27%7D%29%20%20%2A%20%20%2810%20%2A10%5E%7B-15%7D%29%5E2%20%5B%202%5E2%20-%201%20%5E2%20%5D%20%7D)
=> 
Generally the energy of the photon emitted is also mathematically represented as

=> 
=> 
=> 
Generally the range of wavelength of X-ray is 
So this wavelength is for an X-ray.
Answer:

Explanation:
Given that

We know that acceleration a given as




We know that



So the magnitude of force F
