Answer:
The correct answer to the following question will be Option A (moment arm; pivot point).
Explanation:
- The moment arm seems to be the duration seen between joint as well as the force section trying to act mostly on the joint. Each joint that is already implicated in the workout seems to have a momentary arm.
- The moment arm extends this same distance from either the pivot point to just the position of that same pressure exerted.
- The pivotal point seems to be the technical indicators required to fully measure the appropriate demand trends alongside different time-frames.
The other three choices are not related to the given situation. So that option A is the appropriate choice.
Answer:
the only effect it has is to create more induced charge at the closest points, but the net face remains zero, so it has no effect on the flow.
Explanation:
We can answer this exercise using Gauss's law
Ф = ∫ e . dA =
/ ε₀
field flow is directly proportionate to the charge found inside it, therefore if we place a Gaussian surface outside the plastic spherical shell. the flow must be zero since the charge of the sphere is equal induced in the shell, for which the net charge is zero. we see with this analysis that this shell meets the requirement to block the elective field
From the same Gaussian law it follows that if the sphere is not in the center, the only effect it has is to create more induced charge at the closest points, but the net face remains zero, so it has no effect on the flow , so no matter where the sphere is, the total induced charge is always equal to the charge on the sphere.
The density of the substance is the ratio of its mass over the space it occupies. In mathematical equation, this can be expressed as,
ρ = m / v
where ρ is density, m is mass, and v is volume.
Substituting the known values from the given,
ρ = (45 g) / (8 cm³)
ρ = 5.625 g/cm³
<em>ANSWER: 5.625 g/cm³</em>
Answer:
Current flows in a resistor-capacitor circuit because of the varying electric field across the plates of a capacitor induced by an AC voltage source <em>(displacement current)</em>
Explanation:
In a capacitor, current does not flow the same way it does in a circuit, that is through conduction. This is because there is a highly resistive material in between the plates of the capacitor. Rather current flows through a phenomenon called displacement current.
Because of change in charge accumulation with time above the plates, the electric field changes causing the displacement current.
Displacement current arises due to the flow of electrons as a result of the varying magnetic fields set up on the plates of the capacitor when supplied with an AC voltage. It is important to note that a DC voltage does not induce any displacement current.
<em>Through this, phenomenon discovered by Maxwell, current is able to flow in a resistor-capacitor circuit despite the absence of an electrically conductive path through the plates.</em>
Answer:
Force constant, k = 653.3 N/m
Explanation:
It is given that,
Weight of the bag of oranges on a scale, W = 22.3 N
Let m is the mass of the bag of oranges,


m = 2.27 kg
Frequency of the oscillation of the scale, f = 2.7 Hz
We need to find the force constant (spring constant) of the spring of the scale. We know that the formula of the frequency of oscillation of the spring is given by :



k = 653.3 N/m
So, the force constant of the spring of the scale is 653.3 N/m. Hence, this is the required solution.