answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jarptica [38.1K]
2 years ago
7

When Brett and Will ride the​ carousel, Brett always selects a horse on the outside​ row, whereas Will prefers the row closest t

o the center. These rows are 19 ft 1 in.19 ft 1 in. and 11 ft 11 in.11 ft 11 in. from the​ center, respectively. The angular speed of the carousel is 2.72.7 revolutions per minute. What is the​ difference, in miles per​ hour, in the linear speeds of Brett and​ Will?
Physics
1 answer:
sp2606 [1]2 years ago
7 0

Answer:

the​ difference, in miles per​ hour, in the linear speeds of Brett and​ Will;

∆v = 1.38 mph

Explanation:

Given;

Angular speed w = 2.7 revolutions per minute

Converting to revolutions per hour

w = 2.7 × 60 revolutions per hour

w = 162 rev/hour

Linear speed v = angular speed × 2πr

the​ difference, in miles per​ hour, in the linear speeds of Brett and​ Will;

∆v = w × 2π(r1 - r2)

r1 = Brett radius in miles

r2 = Will radius in miles

r1 = 19ft 1in = (19×12 + 1) = 229 in

r1 = 229 × 1.57828283 × 10^-5 miles

r2 = 11 ft 11 in = (11×12 + 11) = 143 in

r2 = 143 × 1.57828283 × 10^-5 miles

Substituting the values;

∆v = 162 × 2π × (229-143)×1.57828283 × 10^-5 mph

∆v = 1.38 mph

You might be interested in
A container of volume 0.6 m^3 contains 5.3 mol of argon gas at 24°C. Assuming argon behaves as an ideal gas, find the total inte
Vitek1552 [10]

Answer:

the internal energy of the gas is 433089.52 J

Explanation:

let n be the number of moles, R be the gas constant and T be the temperature in Kelvins.

the internal energy of an ideal gas is given by:

Ein = 3/2×n×R×T

     = 3/2×(5.3)×(8.31451)×(24 + 273)

     = 433089.52 J

Therefore, the internal energy of this gas is 433089.52 J.

5 0
2 years ago
Your 64-cm-diameter car tire is rotating at 3.5 rev/s when suddenly you press down hard on the accelerator. After traveling 200
andreyandreev [35.5K]

Answer: angular acceleration = 0.748rad/s²

Explanation: according to the question, our answer needs to be in rad/s², thus all units in rev/s will be converted to rad/s

Assuming the motion of the object is of a constant angular acceleration, then newton's laws of motion is applicable.

The formulae below is used

v² = u² + 2αθ

v = final angular speed =6rev/s = 6*2π = 12π rad/s

u =initial angular speed =3.5rev/s = 3.5 *2π = 7π rad/s

Note 1 rev = 2π rad.

α = angular acceleration.

θ = angular displacement.

Diameter = 64cm = 0.64m, radius = 64/2 = 32cm = 0.32m

The angular displacement can be gotten using the formulae below

S = rθ, where s= linear distance covered = 200m, r = radius = 0.32m

θ = S/r = 200/0.32=625 rad.

By substituting the parameter we have that

(12π)² = (7π)² + 2α(625)

1421.22 = 486.31 + 1250α

1421.22 - 486.31 = 1250α

934.91 = 1250α

α = 934.91/1250

α= 0.748 rad/s²

4 0
2 years ago
A cyclist is riding his bike up a mountain trail. When he starts up the trail, he is going 8 m/s. As the trail gets steeper, he
taurus [48]
-3 m/s
---------
per min

oh I think 8m/s to 3m/s to 0m/s

idk probably -0.08 

7 0
2 years ago
Read 2 more answers
Jenny and Alyssa are members of the cross-country team. On a training run, Jenny starts off and runs at a constant 3.8 m/s. Alys
guapka [62]

Answer:

285 seconds

Explanation:

Jenny speed is 3.8 m/s

Alyssa speed in 4.0 m/s

Alyssa starts after 15 seconds

Find the distance covered by Jenny, when Alyssa starts

Distance=Speed*time

Distance covered by Jenny in 15 seconds= 3.8×15=57m

Relative speed of the two members heading same direction will be;

4.0m/s-3.8m/s=0.2m/s

To find the time Alyssa catch up with Jenny you divide the distance to be covered by Alyssa by the relative speed of the two

Distance=57m, relative speed=0.2m/s  t=57/0.2 =285 seconds

=4.75 minutes

5 0
2 years ago
Read 2 more answers
An automobile traveling at 25.0 km/h along a straight, level road accelerates to 65.0 km/h in 6.00 s. what is the magnitude of t
USPshnik [31]
Note that
1 km/h = (1000 m)/(3600 s) = 0.27778 m/s

Initial velocity, v₁ = 25 km/h = 6.9444 m/s
Final velocity, v₂ = 65 km/h = 18.0556 m/s

Time interval, dt = 6 s.

Calculate average acceleration.
a = (v₂ - v₁)/dt
   = (18.0556 - 6.9444 m/s)/(6 s)
   = 1.852 m/s²

Answer:
The average acceleration is 1.85 m/s² (nearest hundredth)
3 0
2 years ago
Other questions:
  • The asteroid belt is a region between Mars and Jupiter that contains a multitude of large rocks and planetary fragments called a
    14·1 answer
  • A strip 1.2 mm wide is moving at a speed of 25 cm/s through a uniform magnetic field of 5.6 t. what is the maximum hall voltage
    11·1 answer
  • the distance between the sun and earth is about 1.5X10^11 m. express this distance with an SI prefix and kilometers
    5·1 answer
  • A block of mass m1 = 3.5 kg moves with velocity v1 = 6.3 m/s on a frictionless surface. it collides with block of mass m2 = 1.7
    6·1 answer
  • A car of mass 1100kg moves at 24 m/s. What is the braking force needed to bring the car to a halt in 2.0 seconds? N
    13·1 answer
  • Tendons are strong elastic fibers that attach muscles to bones. To a reasonable approximation, they obey Hooke's law. In laborat
    14·1 answer
  • An individual white LED (light-emitting diode) has an efficiency of 20% and uses 1.0 W of electric power. a. How many LEDs must
    8·1 answer
  • Consider the reaction data. A ⟶ products T ( K ) k ( s − 1 ) 225 0.385 525 0.635 What two points should be plotted to graphicall
    11·1 answer
  • 1. A diffraction grating with 5.000 x 103 lines/cm is used to examine the sodium
    8·2 answers
  • A flywheel of mass M is rotating about a vertical axis with angular velocity ω0. A second flywheel of mass M/5 is not rotating a
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!