answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rosijanka [135]
2 years ago
6

Jenny and Alyssa are members of the cross-country team. On a training run, Jenny starts off and runs at a constant 3.8 m/s. Alys

sa starts 15 s later and runs at a constant 4.0 m/s. At what time after Jenny's start does Alyssa catch up with Jenny?
Physics
2 answers:
Delvig [45]2 years ago
8 0

Answer:

<h2>After 100 seconds Alyssa catch up with Jenny.</h2>

Explanation:

<h3>Jenny's data:</h3>

v_{Jenny} =3.8m/s

t_{Jenny}=t

d_{Jenny}=d

<h3>Alyssa's data:</h3>

v_{Alyssa}=4.0m/s

t_{Alyssa}=t-15, because she has a difference of 15 seconds.

d_{Alyssa}=d

Both move at a constant speed, that means there's no acceleration, their speed is always the same.

Now, the equation of each movement is

d=3.8t and d=4(t-15), then we solve this two.

We replace the first equation into the second one

3.8t=4(t-15)\\3.8t=4t-20\\20=4t-3.8t\\0.2t=20\\t=\frac{20}{0.2}\\ t=100

That means after 100 seconds Alyssa catch up with Jenny.

guapka [62]2 years ago
5 0

Answer:

285 seconds

Explanation:

Jenny speed is 3.8 m/s

Alyssa speed in 4.0 m/s

Alyssa starts after 15 seconds

Find the distance covered by Jenny, when Alyssa starts

Distance=Speed*time

Distance covered by Jenny in 15 seconds= 3.8×15=57m

Relative speed of the two members heading same direction will be;

4.0m/s-3.8m/s=0.2m/s

To find the time Alyssa catch up with Jenny you divide the distance to be covered by Alyssa by the relative speed of the two

Distance=57m, relative speed=0.2m/s  t=57/0.2 =285 seconds

=4.75 minutes

You might be interested in
A spherical drop of water carrying a charge of 30 pC has a potential of 500 V at its surface (with V 0 at infinity). (a) What is
Delicious77 [7]

Answer:

A. 5.4 * 10^(-4) m

B. 500V

Explanation:

A. Electric potential, V is given as:

V = kq/r

This means that radius, r is

r = kq/V

r = (9 * 10^9 * 30 * 10^(-12))/500

r = (270 * 10^(-3))/500

r = 5.4 * 10^(-4) m

B. Now the radius is doubled and the charge is doubled,

V = (9 * 10^9 * 2 * 30 * 10^(-12))/(2 * 5.4 * 10^(-4) * 2)

V = 500V

7 0
2 years ago
An ocean liner is cruising at 10 meters/second and is about to approach a stationary ferryboat. A parcel is released from the oc
Afina-wow [57]
The parcel will undergo projectile motion, which means that it will have motion in both the horizontal and vertical direction.

First, we determine how long the parcel will fall using:

s = ut + 1/2 at²

where s will be the height, u is the initial vertical velocity of the parcel (0), t is the time of fall and a is the acceleration due to gravity. 

5.5 = (0)(t) + 1/2 (9.81)(t)²
t = 1.06 seconds

Now, we may use this time to determine the horizontal distance covered by the parcel by using:
distance = velocity * time

The horizontal velocity of the parcel will be equal to the horizontal velocity of the cruise liner.

Distance = 10 * 1.06
Distance = 10.6 meters

The boat should be 10.6 meters away horizontally from the point of release.
4 0
2 years ago
A yo-yo can be thought of as a solid cylinder of mass m and radius r that has a light string wrapped around its circumference (s
lbvjy [14]

Answer:

6.5 m/s^2

Explanation:

The net force acting on the yo-yo is

F_net = mg-T

ma=mg-T

now T= mg-ma

net torque acting on the yo-yo is

τ_net = Iα

I= moment of inertia (= 0.5 mr^2 )

α = angular acceleration

τ_net = 0.5mr^2(a/r)

Tr= 0.5mr^2(a/r)

(mg-ma)r=0.5mr^2(a/r)

a(1/2+1)=g

a= 2g/3

a= 2×9.8/3 = 6.5 m/s^2

4 0
2 years ago
a 100 kg gymnast comes to a stop after tumbling. her feet do -5000J of net work to stop her. Use the work-kinetic energy theorem
VikaD [51]
W=ΔKE , W=-5000j
KEinitial=(1/2)mv² , KEfinal=0j 
ΔKE=-(1/2)mv²
-5000=-(1/2)(100kg)v²
v=10 m/s

6 0
2 years ago
Read 2 more answers
Springfield's "classic rock" radio station broadcasts at a frequency of 102.1 mhz. what is the length of the radio wave in meter
Mila [183]
The frequency of the radio wave is:
f=102.1 MHz = 102.1 \cdot 10^6 Hz

The wavelength of an electromagnetic wave is related to its frequency by the relationship
\lambda= \frac{c}{f}
where c is the speed of light and f the frequency. Plugging numbers into the equation, we find
\lambda= \frac{3 \cdot 10^8 m/s}{102.1 \cdot 10^6 Hz}= 2.94 m
and this is the wavelength of the radio waves in the problem.
7 0
2 years ago
Other questions:
  • Your boat capsizes but remains floating upside down. what should you do?
    13·2 answers
  • A large mass collides with a stationary, smaller mass. How will the masses behave if the collision is inelastic?
    6·2 answers
  • Jane is a team leader. Match her leadership and teamwork skills to the appropriate descriptions.making her team understand the r
    6·1 answer
  • A clock has radius of 0.5m. The outermost point on its minute hand travels along the edge. What is its tangential speed?
    11·1 answer
  • Given three capacitors, c1 = 2.0 μf, c2 = 1.5 μf, and c3 = 3.0 μf, what arrangement of parallel and series connections with a 12
    12·1 answer
  • In a fusion reaction, the nuclei of two atoms join to form a single atom of a different element. In such a reaction, a fraction
    5·1 answer
  • A ball is kicked horizontally at 8.0 m/s from a cliff 80m high. What is the acceleration of the ball in the vertical
    13·1 answer
  • A penny is placed on a rotating turntable. Where on the turntable does the penny require the largest centripetal force to remain
    7·1 answer
  • If the activation energy for a given compound is found to be 103 kJ/mol, with a frequency factor of 4.0 × 1013 s-1, what is the
    10·2 answers
  • Kevin is a black high school senior. While walking home from a sporting event at school, he sees a police car and decides to tak
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!