Assuming that this gas is in ideal state, we can use the relation that for every 1 mol of an ideal gas it would have a volume of 22.4 L. But before using this, relation we need to convert the number of grams of H2 into moles by using the molar mass of 2.02 g/mol.
moles H2 = 0.00922 g ( 1 mol / 2.02 g ) = 0.005 mol H2
Volume H2 at STP = 0.005 mol H2 ( 22.4 L / 1 mol ) = 0.102 L of H2
By definition it is known that force equals mass by acceleration. In other words F = m * a. To find the acceleration, you must clear the formula mentioned. Therefore, for a force of 190.08N and a mass of 28 Kg, we have that the acceleration is a = F / m = (190.08) / (28) = 6.79 m / s ^ 2
Answer: Resistance = 
The approximate diameter of a penny is, <em>d</em> = 20 mm
thickness of penny is, <em>L = </em> 1.5×
mm
The area of penny along circular face is,
= 3.14×
m²
The resistivity of copper is <em>ρ</em> = 1.72 x 10-8 Ωm.
Resistance,

6.0 m longer because the player ran 3 and came back 3 at the very end, which looks like he went nowhere but in reality he ran 6.
The answer is 1.01 x 10^(-11) N. I arrived to this answer through calculating the GPEs of both balls. Bjorn's ball has a GPE of 1.402 x 10^(-11) N. Billie Jean's ball has a GPE of <span>2.503 x 10^(-11) N. I subtracted the two and I found that Billie Jean's tennis ball has a GPE of 1.01 x 10^(-11) more than Bjorn's tennis ball.</span>