answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dezoksy [38]
2 years ago
11

Four kilograms of carbon monoxide (CO) is contained in a rigid tank with a volume of 1 m^3. The tank is fitted with a paddle whe

el that transfers energy to the CO at a constant rate of 14 W for 1 h. During the process, the specific internal energy of the carbon monoxide increases by 10 kJ/kg. If no overall changes in kinetic and potential energy occur,
determine:
a. the specific volume at the final state;
b. the energy transfer by work;
c. the energy transfer by heat transfer, and the direction of the heat transfer.
Physics
1 answer:
Drupady [299]2 years ago
6 0

Answer:

(a). The specific volume at the final state is 0.25 m³/kg.

(b). The energy transfer by work is 50.4 kJ.

(c). The energy transfer by heat  is -10.4 kJ.

Negative sign shows the direction of heat

Explanation:

Given that,

Weight of carbon monoxide = 4 kg

Volume of tank = 1 m³

Constant rate of 14W for 1 hour

The specific internal energy of the carbon monoxide increases by 10 kJ/kg.

(a). We need to calculate the specific volume at the final state

Using formula of specific volume

V'=\dfrac{V}{m}

Put the value into the formula

V'=\dfrac{1}{4}

V'=0.25\ m^3/kg

(b). We need to calculate the energy transfer by work

Using formula of work

W=Pt

Where, P = power

t = time

Put the value into the formula

W=14\times1\times3600

W=50.4\ kJ

(c). The energy transfer by heat transfer, and the direction of the heat transfer

We need to calculate the \Delta U

Using formula of internal energy

\Delta U=m\Delta u

Put the value into the formula

\Delta U=4\times10

\Delta U=40\ kJ

We need to calculate the energy transfer by heat

Using formula of energy transfer

Q=\Delta U-W

Put the value into the formula

Q=40-50.4

Q=-10.4\ kJ

Negative sign shows the direction of heat that is removed from CO.

Hence, (a). The specific volume at the final state is 0.25 m³/kg.

(b). The energy transfer by work is 50.4 kJ.

(c). The energy transfer by heat  is -10.4 kJ.

Negative sign shows the direction of heat.

You might be interested in
A golfer hits a golf ball at an angle of 25.0° to the ground. if the golf ball covers a horizontal distance of 301.5 m, what is
kvasek [131]

<u>Answer:</u>

 Maximum height reached = 35.15 meter.

<u>Explanation:</u>

Projectile motion has two types of motion Horizontal and Vertical motion.

Vertical motion:

         We have equation of motion, v = u + at, where v is the final velocity, u is the initial velocity, a is the acceleration and t is the time taken.

         Considering upward vertical motion of projectile.

         In this case, Initial velocity = vertical component of velocity = u sin θ, acceleration = acceleration due to gravity = -g m/s^2 and final velocity = 0 m/s.

        0 = u sin θ - gt

         t = u sin θ/g

    Total time for vertical motion is two times time taken for upward vertical motion of projectile.

    So total travel time of projectile = 2u sin θ/g

Horizontal motion:

  We have equation of motion , s= ut+\frac{1}{2} at^2, s is the displacement, u is the initial velocity, a is the acceleration and t is the time.

  In this case Initial velocity = horizontal component of velocity = u cos θ, acceleration = 0 m/s^2 and time taken = 2u sin θ /g

 So range of projectile,  R=ucos\theta*\frac{2u sin\theta}{g} = \frac{u^2sin2\theta}{g}

 Vertical motion (Maximum height reached, H) :

     We have equation of motion, v^2=u^2+2as, where u is the initial velocity, v is the final velocity, s is the displacement and a is the acceleration.

   Initial velocity = vertical component of velocity = u sin θ, acceleration = -g, final velocity = 0 m/s at maximum height H

   0^2=(usin\theta) ^2-2gH\\ \\ H=\frac{u^2sin^2\theta}{2g}

In the give problem we have R = 301.5 m,  θ = 25° we need to find H.

So  \frac{u^2sin2\theta}{g}=301.5\\ \\ \frac{u^2sin(2*25)}{g}=301.5\\ \\ u^2=393.58g

Now we have H=\frac{u^2sin^2\theta}{2g}=\frac{393.58*g*sin^2 25}{2g}=35.15m

 So maximum height reached = 35.15 meter.

7 0
2 years ago
In the middle of the night you are standing a horizontal distance of 14.0 m from the high fence that surrounds the estate of you
olchik [2.2K]

PART A)

horizontal distance that will be moved = 14 m

Height of the fence = 5.0 m

height from which it is thrown = 1.60 m

angle of projection = 54 degree

So here we can say that stone will travel vertically up by distance

\Delta y = 5 - 1.6 = 3.40 m

now we will have displacement in horizontal direction

\Delta x = 14 m

now we know that

v_x = vcos54

v_y = vsin54

now we will have

\Delta x = v_x t

14 = (vcos54)t

also for y direction

\Delta y = v_y t + \frac{1}{2}at^2

3.40 = (vsin54)t - \frac{1}{2}(9.8) t^2

now from the two equations we will have

3.40 = (vsin54)(\frac{14}{vcos54}) - 4.9 t^2

3.40 = 14 tan54 - 4.9 t^2

3.40 = 19.3 - 4.9 t^2

t = 1.8 s

now from above equations

14 = vcos54 (1.8)

v = 13.2 m/s

So the minimum speed will be 13.2 m/s

Part B)

Total time of the motion after which it will land on the ground will be "t"

so its vertical displacement will be

\Delta y = -1.60 m

now we will have

-1.60 = v_y t + \frac{1}{2}at^2

-1.60 = (13.2sin54)t - \frac{1}{2}(9.8)t^2

4.9 t^2 - 10.7t - 1.60 = 0

t = 2.3 s

Now the time after which it will reach the fence will be t1 = 1.8 s

so total time after which it will fall on other side of fence

t_2 = t - t_1

t_2 = 2.3 - 1.8 = 0.5 s

now the displacement on the other side is given as

\Delta x = (vcos54) t_2

\Delta x = (13.2 cos54)(0.5)

\Delta x = 3.88 m

4 0
2 years ago
Eac of the two Straight Parallel Lines Each of two very long, straight, parallel lines carries a positive charge of 24.00 m C/m.
Cloud [144]

Answer:

The magnitude of the electric field at a point equidistant from the lines is 4.08\times10^{5}\ N/C

Explanation:

Given that,

Positive charge = 24.00  μC/m

Distance = 4.10 m

We need to calculate the angle

Using formula of angle

\theta=\sin^{-1}(\dfrac{\dfrac{d}{2}}{2d})

\theta=\sin^{-1}(\dfrac{1}{4})

\theta=14.47^{\circ}

We need to calculate the magnitude of the electric field at a point equidistant from the lines

Using formula of electric field

E=\dfrac{2k\lambda}{r}\times2\cos\theat

Put the value into the formula

E=\dfrac{2\times9\times10^{9}\times24.00\times2\times10^{-6}\cos14.47}{2.05}

E=408094.00\ N/C

E=4.08\times10^{5}\ N/C

Hence, The magnitude of the electric field at a point equidistant from the lines is 4.08\times10^{5}\ N/C

6 0
2 years ago
Seven seconds after a brilliant flash of lightning, thunder shakes the house. approximately how far was the lightning strike fro
tangare [24]
Very roughly 7,700 feet ... about 1.5 miles.
8 0
2 years ago
A sleeping 68 kg man has a metabolic power of 79 w .
Lesechka [4]
 <span>65W * 8h * 3600s/h = 1.9e6 J = 447 Cal </span>
3 0
2 years ago
Other questions:
  • The short vertical parts adjacent to it also reach into the magnetic field and should experience forces. why can we neglect them
    7·1 answer
  • Water in the lake behind hoover dam is 221 m deep. part a what is the gauge water pressure at the base of the dam?
    6·2 answers
  • A large mass collides with a stationary, smaller mass. How will the masses behave if the collision is inelastic?
    6·2 answers
  • The forward movement of orbital waves classifies them as ____ waves.
    13·1 answer
  • Vectors a and b have scalar product â6.00, and their vector product has magnitude +9.00. what is the angle between these two vec
    5·1 answer
  • A novice pilot sets a plane’s controls, thinking the plane will fly at 2.50 × 102 km/h to the north. if the wind blows at 75 km/
    15·1 answer
  • Given three capacitors, c1 = 2.0 μf, c2 = 1.5 μf, and c3 = 3.0 μf, what arrangement of parallel and series connections with a 12
    12·1 answer
  • If a freely suspended vertical spring is pulled in downward direction and then released, which type of wave is produced in the s
    9·2 answers
  • A 10 m long high tension power line carries a current of 20 A perpendicular to Earth's magnetic field of 5.5 x10⁻⁵ T. What is th
    12·1 answer
  • A student decides to spend spring break by driving 50 miles due east, then 50 miles 30 degrees south of east, then 50 miles 30 d
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!