The heavy stone would produce waves with a higher amplitude, rather than the smaller stone, because since the stone is heaver its going to have a grater impact and displace more water to create a bigger wave.
efficiency= [useful energy transferred ÷ total energy supply]×100%
So, [5500÷10000]×100%=0.55×100
=55%
A bathroom scales works due to gravity. Under normal
conditions, a reading can be obtained when your body is pushing some force on
the scale. However in this case, since you and the scale are both moving
downwards, so your body is no longer pushing on the scale. Therefore the answer
is:
<span>The reading will drop to 0 instantly</span>
Answer:
Current flows in a resistor-capacitor circuit because of the varying electric field across the plates of a capacitor induced by an AC voltage source <em>(displacement current)</em>
Explanation:
In a capacitor, current does not flow the same way it does in a circuit, that is through conduction. This is because there is a highly resistive material in between the plates of the capacitor. Rather current flows through a phenomenon called displacement current.
Because of change in charge accumulation with time above the plates, the electric field changes causing the displacement current.
Displacement current arises due to the flow of electrons as a result of the varying magnetic fields set up on the plates of the capacitor when supplied with an AC voltage. It is important to note that a DC voltage does not induce any displacement current.
<em>Through this, phenomenon discovered by Maxwell, current is able to flow in a resistor-capacitor circuit despite the absence of an electrically conductive path through the plates.</em>
Emily throws the ball at 30 degree below the horizontal
so here the speed is 14 m/s and hence we will find its horizontal and vertical components


vertical distance between them

now we will use kinematics in order to find the time taken by the ball to reach at Allison

here acceleration is due to gravity

now we will have

now solving above quadratic equation we have

now in order to find the horizontal distance where ball will fall is given as

here it shows that horizontal motion is uniform motion and it is not accelerated so we can use distance = speed * time

so the distance at which Allison is standing to catch the ball will be 5.33 m