Answer:
conserved
Explanation:
During this process the energy is conserved
Answer:
Gravity
Explanation:
The answer is gravity because when the 3 masses were hung from the spring, gravity pulled the spring towards the ground.
Answer:
a) a= 8.33 m/s², T = 12.495 N
, b) a = 2.45 m / s²
Explanation:
a) this is an exercise of Newton's second law. As the upper load is secured by a cable, it cannot be moved, so the lower load is determined by the maximum acceleration.
We apply Newton's second law to the lower charge
fr₁ + fr₂ = ma
The equation for the force of friction is
fr = μ N
Y Axis
N - W₁ –W₂ = 0
N = W₁ + W₂
N = (m₁ + m₂) g
Since the beams are the same, it has the same mass
N = 2 m g
We replace
μ₁ 2mg + μ₂ mg = m a
a = (2μ₁ + μ₂) g
a = (2 0.30 + 0.25) 9.8
a= 8.33 m/s²
Let's look for cable tension with beam 2
T = m₂ a
T = 1500 8.33
T = 12.495 N
b) For maximum deceleration the cable loses tension (T = 0 N), so as this beam has less friction is the one that will move first, we are assuming that the rope is horizontal
fr = m₂ a₂
N- w₂ = 0
N = W₂ = mg
μ₂ mg = m a₂
a = μ₂ g
a = 0.25 9.8
a = 2.45 m / s²
Answer:
the length of the now stationary spacecraft = 89.65m
Explanation:
In contraction equation, Length contraction L is the shortening of the measured length of an object moving relative to the observer’s frame.
Thus, it has a formula;
L = L_o(√(1 - (v²/c²))
Where in this question;
L = 71m and v = 0.610 c
Thus;
71 = L_o (√(1 - ((0.61c)²/c²))
c² will cancel out to give;
71 = L_o (√(1 - 0.61²)
71 = L_o (√(1 - 0.61²)
71 = 0.792L_o
L_o = 71/0.792
L_o = 89.65m