Answer:
Minimum capacitance = 200 μF
Explanation:
From image B attached, we can calculate the current flowing through the capacitors.
Thus;
Since V=IR; I = V/R = 5/500 = 0.01 A
Maximum charge in voltage is from 5V to 4.9V. Thus, each capacitor will have 2.5V. Hence, change in voltage(Δv) for each capacitor will be ; Δv = 0.05 V
So minimum capacitance will be determined from;
i(t) = C(dv/dt)
So, C = i(t)(Δt/Δv) = 0.01[0.001/0.05]
C = 0.01 x 0.0002 = 200 x 10^(-6) F = 200 μF
Answer:

Explanation:
The free body diagram of the block on the slide is shown in the below figure
Since the block is in equilibrium we apply equations of statics to compute the necessary unknown forces
N is the reaction force between the block and the slide
For equilibrium along x-axis we have

Using value of N from equation β in α we get value of force as

Applying values we get

Answer:
the center of mass is 7.07 cm apart from the bend
Explanation:
the centre of mass of a wire of length L is L/2 ( assuming uniform density). Then initially the x coordinate of the centre of mass is
x₁ = L/2 = 20 cm /2 = 10 cm
when the wire is bent in a right angle the coordinates of the new centre of mass will be
x₂ = L₂/2
y₂= L₂/2
where L₂ is the length of the horizontal piece and vertical piece . Then L₂=L/2
x₂ = L₂/2 = L/4 = 20 cm/4 = 5 cm
y₂= L₂/2 = L/4 = 20 cm/4 = 5 cm
x₂=y₂=X
locating the bend in the origin (0,0) the distance to the centre of mass is
d = √(x₂²+y₂²) = √(2X²) = √2*X=√2*5cm = 7.07 cm
d = 7.07 cm
Answer:
The volume at mountains is 2.766 L.
Explanation:
Given that,
Volume 
Pressure 
Pressure 
Temperature 
Temperature 
We need to calculate the volume at mountains
Using gas law

For both temperature,

Put the value into the formula



Hence, The volume at mountains is 2.766 L.
Answer:
d. less than 20m/s
Explanation:
To the 2nd car, the first car is travelling 10m/s east and 10m/s south. So the total velocity of the first car with respect to the 2nd car is
[tex]\sqrt{10^2 + 10^2} =10\sqrt{2}=14.14m/s
As 14.14m/s is less than 20m/s. d is the correct selection for this question.