Answer:
Torque τ =w ×0 = 0
Explanation:
We know that the torque is given by the product of the force and perpendicular distance between the force and the axis.
Here the gravity force act at the center and the rotational axis is also passing through the center.
Therefore the perpendicular distance between the force and the rotational axis would be zero.
Hence the torque will be
Torque = Force × Perpendicular distance
Torque = mg×0 = 0
Therefore the torque would be zero.
For this case we have that by definition:

Where,
- <em>m: mass of the object
</em>
- <em>a: acceleration of the object
</em>
- <em>F: summation of forces
</em>
We have then:

Then, by clearing the acceleration we have:

Substituting values we have:

Answer:
The acceleration of the box is equal to:

Answer:
The airliner travels 1.65 km along the runway before coming to a halt.
Explanation:
Given
Resistive forces = (2.90 × 10⁵) N = 290000 N
Mass of the airliner = (1.70 × 10⁵) kg = 170000 kg
Velocity of airliner = 75 m/s
Let the distance over moved by the airliner be equal to d
According to the work-energy theorem, the work done by the resistive forces in stopping the airliner is equal to the travelling kinetic energy of the airliner.
Work done by the resistive forces = (290000) × d = (290,000d) J
Kinetic energy of the airliner = (1/2)(170000)(75²) = 478,125,000 J
290000d = 478,125,000
d = (478,125,000/290,000)
d = 1648.7 m = 1.65 km
Hope this helps!!!
Answer:
Therefore,
Current through Nichrome wire is 0.3879 Ampere.
Explanation:
Given:
Length = l = 10 meter


V = 12 Volt
To Find:
Current, I =?
Solution:
Resistance for 0.0-m long 22-gauge nichrome wire with a radius of 0.321 mm if it is connected across a 12.0-V battery given as

Where,
R = Resistance
l = length
A = Area of cross section = πr²

Substituting the values we get




Now by Ohm's Law,

Substituting the values we get

Therefore,
Current through Nichrome wire is 0.3879 Ampere.